基于毛孔尺度特征分析的带皮猪肉追溯研究
[Abstract]:Pork is the main meat food in our country. Although the government has paid a lot of manpower and material resources to supervise the pork production, there have been a series of serious pork food safety accidents in recent years. At present, the traceability of pork in our country mainly depends on the qualified seal on the skin of the pig and the information recorded by the personnel in every link, and it does not depend on the characteristics of the pork itself to realize the tracing of the pork. Pores, as the characteristics of skinned pork, are common in pig skin, and can basically maintain the same characters in the circulation process. The purpose of this study is to explore and extract the unique feature information carried by pores in porcine skin images and to match the local porcine skin images with the overall pig skin images so as to achieve the traceability of skinned pork. The main contents and conclusions of this paper are as follows: (1) the study of pore feature extraction from high-definition porcine skin image. According to the target of this study, the pig skin samples were purchased from the market, and the high-definition pig skin images were collected. The porcine pores in the high-definition pig skin images were modeled. Based on the pore characteristics of porcine skin image and the target application scene, a multi-directional pore feature extraction algorithm, MPSIFT (Multi-orientation Pore Scale Invariant Feature Transform), is proposed based on the pore feature extraction algorithm (PSIFT (Pore Scale Invariant Feature Transform). The resulting pore features have a certain rotation invariance. MPSIFT algorithm is used to detect and extract pores of porcine skin image, and at least one feature point description vector is generated for each pore feature point. (2) matching between local pig skin image and total pig skin image. Based on the pore size feature of high-definition pig skin image extracted by MPSIFT algorithm, the matching between local pig skin image and total pig skin image is studied in this paper. In this study, the angle of feature point description vector is used as the similarity measure of porcine skin image pore feature point, and the ratio of different feature point description vector and matching feature point description vector angle is used to measure the matching degree between feature points. After the pore feature matching of two porcine skin images is completed, the outlier detection method is used to screen the matching feature pairs, and the false matching feature pairs are eliminated. So as to ensure the quality of the matching pore feature points. (3) based on the matching between local porcine skin image and total porcine skin image, a new technique of pork traceability based on pore size feature analysis is proposed in this paper. The traceability principle of skinned pork and the application scene of this technique are also given. (4) the experiment and analysis of porcine skin image pore feature extraction and matching. In this study, the effects of different data characteristics on the matching effect between local pig skin image and total pig skin image were investigated. Finally, 94.14% of the local pig skin image and the total pig skin image are matched correctly in all the pig skin images collected. The success rate of local pig skin image was 86.73%.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS251.51;TP391.41
【参考文献】
相关期刊论文 前9条
1 丁同;王仲根;汪强;唐晓菀;;基于物联网及DNA识别技术的牛肉溯源系统的研究[J];物联网技术;2017年01期
2 周琳琳;何中市;;基于Fisherface和SIFT特征集成的人脸识别[J];现代计算机(专业版);2017年02期
3 冯震;付敬奇;熊南;;一种快速的离群点检测方法[J];电子测量与仪器学报;2016年11期
4 杨奉阳;秦兴;陈浩;郑腾飞;;基于云平台和体温标签的猪肉质量安全追溯系统[J];江苏农业科学;2016年10期
5 李炀;翟社平;;改进的SIFT图像匹配算法[J];计算机技术与发展;2016年11期
6 杨敏;赖惠成;董九玲;班俊硕;林宪峰;;改进SIFT融合五官特征的旋转人脸检测算法[J];计算机测量与控制;2016年04期
7 周颖;;基于SIFT算法的图像特征匹配[J];现代计算机(专业版);2015年05期
8 吴潇;张小波;朱连龙;谈永松;唐雪明;;肉产品分子溯源标记的研究进展[J];食品科学;2010年07期
9 杨明;吴晓萍;洪鹏志;解万翠;蒋志红;邓锐;彭银桥;;可追溯体系在食品供应链中的建立[J];食品与机械;2009年01期
相关博士学位论文 前1条
1 谢菊芳;猪肉安全生产全程可追溯系统的研究[D];中国农业大学;2005年
相关硕士学位论文 前9条
1 罗亮;基于SIFT算法的图像匹配技术的研究[D];东华理工大学;2016年
2 吕智慧;一种基于改进的SIFT算法的图像配准方法[D];哈尔滨理工大学;2016年
3 马媛;猪肉产品安全追溯系统的设计与实现[D];西北农林科技大学;2015年
4 王凯强;基于脂肪酸及~1H-NMR特征标志物的有机猪肉溯源技术研究[D];中国农业科学院;2015年
5 孔大维;基于供应链管理的食品可追溯系统的构建研究[D];成都理工大学;2013年
6 鲍晓成;基于物联网的猪肉食品供应链可追溯体系研究[D];长沙理工大学;2013年
7 王培强;基于RFID与条码技术的猪肉追溯管理信息系统分析与设计[D];北京工业大学;2012年
8 杨欣;猪肉供应链安全跟踪追溯系统分析与设计[D];吉林大学;2009年
9 韩红霞;基于距离离群点的分析与研究[D];江苏大学;2007年
,本文编号:2424320
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2424320.html