基于聚类的加权Slope One推荐技术研究
[Abstract]:The explosive growth of the scale of information in the Internet meets the needs of users for information. However, the huge amount of information makes it difficult for users to locate useful information quickly, reduce the utilization rate of information, and lead to the problem of information overload. Personalized recommendation technology is an effective way for users to make personalized recommendation. Its core is that the recommendation algorithm. Slope One algorithm is a simple and efficient collaborative filtering algorithm based on project. It has been widely used to achieve good recommendation effect in a small amount of data. However, the existing Slope One algorithm can not make accurate recommendation in the case of sparse data. In the process of evaluation, independent items are used to predict the score and the changes of user interest can not be quickly perceived. In order to solve the above problems, this paper improves the method of weight calculation, proposes an improved weighted Slope One algorithm, introduces the related technology of data mining, classifies and preprocesses the data, and proposes a weighted Slope One algorithm based on clustering. The main works are as follows: first, based on the traditional K-Means algorithm, a K-Means algorithm based on minimum spanning tree is proposed to generate K clustering centers automatically. In order to improve the clustering effect, the traditional K-Means algorithm can solve the local optimal problem caused by the randomness of the initial clustering center selection. Secondly, the original item scoring matrix is predicted and filled with the clustering results to solve the sparse problem of the algorithm. According to the clustering results, the size of the recommended candidate set is reduced, and the calculation amount of the recommendation algorithm is reduced. Thirdly, considering the difference between item attribute and item score on project similarity, we introduce the method of project attribute and item score to calculate the project similarity, and improve the accuracy of project similarity. Fourth, in order to better reflect the change of user interest in the algorithm, highlight the role of new data weakening the old data. The time weight is added to the recommendation algorithm, and the time weight function of the access frequency is put forward considering the factors that affect the time weight. Fifthly, according to the improved algorithm proposed in this paper, we design the recommendation system, introduce the module composition, the call relationship between modules and the algorithm flow inside the module, and use the MovieLens data set to verify the system. The experiments show that compared with the traditional recommendation algorithm, the weighted Slope One algorithm based on clustering can effectively solve the sparse problem and reduce the computational complexity. The addition of item similarity and time weight improves the accuracy and time sensitivity of the algorithm. The overall algorithm can significantly reduce the average absolute error and can effectively improve the overall performance of the recommendation system.
【学位授予单位】:北京工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 徐义峰;徐云青;刘晓平;;一种基于时间序列性的推荐算法[J];计算机系统应用;2006年10期
2 余小鹏;;一种基于多层关联规则的推荐算法研究[J];计算机应用;2007年06期
3 张海玉;刘志都;杨彩;贾松浩;;基于页面聚类的推荐算法的改进[J];计算机应用与软件;2008年09期
4 张立燕;;一种基于用户事务模式的推荐算法[J];福建电脑;2009年03期
5 王晗;夏自谦;;基于蚁群算法和浏览路径的推荐算法研究[J];中国科技信息;2009年07期
6 周珊丹;周兴社;王海鹏;倪红波;张桂英;苗强;;智能博物馆环境下的个性化推荐算法[J];计算机工程与应用;2010年19期
7 王文;;个性化推荐算法研究[J];电脑知识与技术;2010年16期
8 张恺;秦亮曦;宁朝波;李文阁;;改进评价估计的混合推荐算法研究[J];微计算机信息;2010年36期
9 夏秀峰;代沁;丛丽晖;;用户显意识下的多重态度个性化推荐算法[J];计算机工程与应用;2011年16期
10 杨博;赵鹏飞;;推荐算法综述[J];山西大学学报(自然科学版);2011年03期
相关会议论文 前10条
1 王韬丞;罗喜军;杜小勇;;基于层次的推荐:一种新的个性化推荐算法[A];第二十四届中国数据库学术会议论文集(技术报告篇)[C];2007年
2 唐灿;;基于模糊用户心理模式的个性化推荐算法[A];2008年计算机应用技术交流会论文集[C];2008年
3 秦国;杜小勇;;基于用户层次信息的协同推荐算法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
4 周玉妮;郑会颂;;基于浏览路径选择的蚁群推荐算法:用于移动商务个性化推荐系统[A];社会经济发展转型与系统工程——中国系统工程学会第17届学术年会论文集[C];2012年
5 苏日启;胡皓;汪秉宏;;基于网络的含时推荐算法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
6 梁莘q,
本文编号:2424350
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2424350.html