机制砂粒径粒形检测系统开发及实验研究
[Abstract]:Asphalt mixture is the most used road construction material in the world at present. In terms of volume composition, fine aggregate in asphalt mixture accounts for 40% of the total volume. The huge market demand makes the natural sand resource decrease year by year. It is inevitable to replace the natural sand with machine-made sand. However, the particle size and grain shape of machine-made sand are not uniform in China, and the quality detection of machine-made sand is the key to ensure the quality of mixture. The traditional vibrating sieve method can only detect the particle size gradation of machine-made sand, and the image method can detect the particle size and shape at the same time. In this paper, the detection algorithm of machine-made sand with a particle size of 0.6 ~ 4.75 mm is studied and the corresponding detection system is developed. The mechanism sand vibration dispersion system is designed, and the falling sand image is collected by CCD camera. In order to reduce the influence of the surface color of the machined sand on the detection result, a non-shadow backlight light source system is designed, and the particle size of the machined sand is developed. Grain shape detection hardware system. Gao Si filter is used to denoise the grayscale image; the maximum inter-class variance method is used to segment the filtered image to obtain the binary image; the incomplete particles at the edge of the image are identified by the geometric characteristics of the particles and removed. The Hu moment feature is used to identify and eliminate the repeated shot particles in the adjacent images, and the conglutinated particles are separated by detecting the convex hull and the concave point of the particles. A new image calibration method is proposed. Based on Visual Studio C, Open CV library and Qt, a software system for particle shape detection of machine-made sand is developed. The reproducibility tests of particle size and particle shape were carried out for the single grade compound of machine-made sand with the particle size range of 0.6 ~ 4.75 mm, and the precision comparison test of the new QICPIC dynamic particle image analyzer was carried out. The experimental results show that the maximum repeatability error of particle size detection is 3.46% and 0.51% for single stage and grade proportioning, and 2.97% and 0.85% for particle shape detection. The more spherical the particle shape, the better the repeatability. Compared with the results of the particle size of neopateck, the maximum deviation of the single stage material and the grade batching is 7.19% and 6.02%, and the maximum deviation of the particle shape is 3.08% and 2.42% respectively. In view of the difference between the image method and the vibrating screen method, a particle size correction method is proposed. The precision of the modified particle size measurement can meet the needs of practical engineering measurement. Based on the flow time method for measuring fine aggregate shape and angularity in JTG E42-2005, the correlation between different particle shape characterization parameters and flow time was studied, by comparing with the flow time method in the National Standard "Highway Engineering aggregate Test Code" (JTG E42-2005). The equivalent ellipse long and short axis ratio is obtained as the optimal particle shape characterization parameter. The developed testing system can meet the requirements of particle size and particle shape laboratory testing, and can effectively monitor the quality of machined sand.
【学位授予单位】:华侨大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U414;TP391.41
【相似文献】
相关期刊论文 前2条
1 邵士勇;黄印博;姚永帮;饶瑞中;;气溶胶粒形光学测量技术的研究进展[J];大气与环境光学学报;2008年01期
2 权龙哲;祝荣欣;马小愚;;基于傅里叶描述的小麦籽粒三维粒形研究[J];东北农业大学学报;2008年06期
相关会议论文 前2条
1 张亚东;张颖慧;董少玲;陈涛;赵庆勇;朱镇;周丽慧;姚姝;赵春芳;于新骆;名瑞;王才林;;利用大粒材料定位水稻粒形性状数量基因位点[A];现代分子植物育种与粮食安全研讨会论文集[C];2011年
2 邓华凤;孙平勇;何强;张武汉;舒服;;水稻粒形遗传及其QTL定位与克隆研究进展[A];中国作物学会50周年庆祝会暨2011年学术年会论文集[C];2011年
相关重要报纸文章 前1条
1 本报特约记者 省种子管理站 向子钧 伍同寸 吴和明 等;怎样用肉眼观察种子的真伪?[N];湖北科技报;2006年
相关博士学位论文 前6条
1 孙亮;水稻粒形主效QTL对粒重形成的遗传贡献和粒长基因GS3.2的图位克隆[D];华中农业大学;2013年
2 王跃星;水稻粒形基因GL7的克隆、功能研究及育种利用[D];中国农业科学院;2015年
3 茆海亮;水稻粒形基因GS3的功能研究[D];华中农业大学;2010年
4 鲁丽;水稻多效性基因Ghd7、粒形基因GW2、GS5、qSW5的进化及与性状的关联分析[D];华中农业大学;2013年
5 楼珏;稻米品质的分子遗传剖析及辐射诱变群体中水稻粒形突变体的鉴定[D];华中农业大学;2009年
6 张晓军;水稻粒长基因qGL3的定位克隆、功能分析及育种利用研究[D];南京农业大学;2012年
相关硕士学位论文 前10条
1 林泽锋;水稻地方品种螃蟹谷的粒形遗传分析与定位[D];南京农业大学;2014年
2 徐礼东;利用籼粳染色体片段置换系研究水稻粒形相关性状的遗传基础[D];南京农业大学;2014年
3 叶乃忠;水稻粒形基因GS2.2的精细定位[D];湖南农业大学;2016年
4 高志强;水稻遗传图谱构建及粒形和粒重QTL定位[D];中国农业科学院;2011年
5 文觅;水稻粒形QTL的定位及休眠候选基因的鉴定[D];华中农业大学;2013年
6 王松凤;水稻粒形相关性状及千粒重QTL表达稳定性分析[D];南京农业大学;2007年
7 李龙;水稻籽粒腹切的QTL分析和一个粒形基因的精细定位[D];中国农业科学院;2012年
8 陆燕;小麦粒形突变体基因的遗传分析及作图[D];中国农业科学院;2013年
9 周海庆;水稻粒形及千粒重的遗传研究[D];延边大学;2014年
10 刘晓芬;大豆栽培品种群体粒形性状及百粒重的关联分析[D];南京农业大学;2010年
,本文编号:2429769
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2429769.html