立体匹配技术在波浪摄影测量中的应用研究
[Abstract]:In this paper, the feature extraction and feature matching of stereo matching in binocular vision are studied in order to increase the number of matching pairs of feature points and reduce the mismatch rate in the background of binocular photowave measurement. The improved stereo matching algorithm is applied to wave height measurement of flume. Firstly, the classical feature extraction algorithms Moravec,Harris and SIFT, are introduced, and the simulation experiments and wave image feature extraction are carried out. The experimental results show that the Harris corner distribution can better reflect the wave structure. The stability of SIFT feature extraction is the best when the wave image changes. Then, the pyramid matching and SIFT matching are introduced, and the simulation experiments and the wave image feature matching are carried out respectively. The experiment shows that the mismatch rate is not high, but the number of matching pairs is small. Then, an improved stereo matching algorithm is proposed to solve the problem that the SIFT algorithm has fewer matching pairs and less mismatch when processing wave images. In the feature extraction part, the Harris sub-pixel corner is used to replace the DoG extremum, and the Harris corner response threshold is changed to change the number of feature points. The Harris sub-pixel corner is obtained by approximating the corner response value by quadratic polynomial. In the part of feature matching, bidirectional matching strategy is used to eliminate mismatch pairs, and polar line constraints are used to determine candidate matching sets in bidirectional matching strategies. The experimental results show that compared with the traditional SIFT algorithm, the improved algorithm not only has a lower mismatch rate, but also has a significant increase in the number of matching pairs. Finally, in order to verify the applicability of the improved stereo matching algorithm in wave images, the improved algorithm is used to deal with the wave images collected from indoor experiments and circular flume experiments. The matching results are used to reconstruct the wave images and contour images. The experimental results show that the waveforms of the three-dimensional images are the same as those of the actual waves, and the errors between the measured values and the actual values of the two groups of wave heights in the flume experiment are about 2.67% and 4.84%, respectively.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U661.7;TP391.41
【参考文献】
相关期刊论文 前10条
1 李治江;冯谨强;曹文冬;曹丽琴;杨萍;;基于边缘特征和可信度的立体匹配算法[J];包装工程;2014年23期
2 崔浩;王中秋;刘慧;许岩;;基于轮廓线提取技术的波峰坐标采集算法研究[J];山东科学;2014年02期
3 孙雪琪;董明利;王君;孙鹏;;双目动态视觉测量的匹配[J];北京信息科技大学学报(自然科学版);2013年02期
4 曾峦;顾大龙;;一种基于扇形区域分割的SIFT特征描述符[J];自动化学报;2012年09期
5 张宁;常雷;徐熙平;;基于机器视觉的三维重建技术研究[J];激光与光电子学进展;2012年05期
6 纪华;吴元昊;孙宏海;王延杰;;结合全局信息的SIFT特征匹配算法[J];光学精密工程;2009年02期
7 乔警卫;胡少兴;;三维重建中特征点提取与匹配算法研究[J];系统仿真学报;2008年S1期
8 左其华;;现场波浪观测技术发展和应用[J];海洋工程;2008年02期
9 刘立;彭复员;赵坤;万亚平;;采用简化SIFT算法实现快速图像匹配[J];红外与激光工程;2008年01期
10 孙鹤泉;邱大洪;沈永明;王永学;;基于光学折射的波面形态测量[J];哈尔滨工业大学学报;2006年04期
相关博士学位论文 前2条
1 蔡宇;三维人脸检测与识别技术研究[D];吉林大学;2013年
2 姜文正;数字立体摄影波浪测量技术[D];中国科学院研究生院(海洋研究所);2012年
相关硕士学位论文 前7条
1 许雯;立体视觉中局部立体匹配算法研究[D];西安电子科技大学;2014年
2 周芳;双目视觉中立体匹配算法的研究与实现[D];大连理工大学;2013年
3 郭金芝;基于SIFT算法的车牌识别系统研究[D];西安电子科技大学;2012年
4 喻恒;黄河模型河势宽度与表面流速图像测量方法的研究与应用[D];河南大学;2011年
5 王静;基于SIFT和角点检测的自动图像配准方法研究[D];华中科技大学;2010年
6 刘盛夏;基于相位信息的立体图像匹配研究[D];上海交通大学;2010年
7 王惠玲;波浪的光学测量法研究[D];大连理工大学;2005年
,本文编号:2429797
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2429797.html