机器学习在影视大数据分析中的研究及应用
[Abstract]:As a new breakthrough in China's national economic system, the film and television industry is widely concerned by the leading personnel in the film and television market, radio operators, major video website operators and some scientific researchers. In the face of the arrival of big data's era, the film and television industry's data storage, processing and analysis are also facing enormous challenges, traditional data storage mode, Data processing methods and data analysis techniques will not meet the needs of applications with huge amounts of data. With the development of mathematical statistics theory and artificial intelligence and many other fields, the theoretical system based on machine learning is gradually constructed, and people try to use machine learning method to process and analyze massive data. In order to extract useful knowledge and information from it. Therefore, it is of great practical significance to study how to use the machine learning method to dig out the hidden features and fluctuating trends behind the data from the massive film and television big data. This article mainly uses the machine learning method to process and analyze the film and television big data, at the same time combines the intelligent film and television big data analysis system to pre-process the massive TV series ratings related data successively, and reduces the feature dimension. Chart analysis and ratings prediction increase the efficiency of data processing and the accuracy of ratings prediction. Therefore, it is of great significance to solve the problems in the film and television big data scene by means of machine learning, which gives researchers effective application ideas and creates the possibility for film and television enterprises to win the final market and obtain higher ratings. The main work of this paper is as follows: [1] pre-processing high-dimensional video data based on K-Means clustering algorithm. According to the selected TV series sample data for attribute selection, data aggregation and data normalization, finally using the K-Means algorithm to complete the data. [2] based on factor analysis for high-dimensional film and television data dimensionality reduction. For highly redundant, high-dimensional TV feature data, The factor analysis method is used to obtain the lower dimension redundancy factor as the feature vector after dimension reduction. [3] based on SVM algorithm and AdaBoost-BP algorithm, the ratings and ratings of TV series are classified and predicted. It uses the reduced dimension TV series feature data, uses the SVM algorithm and the AdaBoost-BP algorithm to establish the ratings prediction model. Then the related data are predicted and analyzed. Finally, the prediction results are compared and the more effective prediction algorithms are summarized. [4] based on the intelligent film and television big data analysis system, the analysis and display of the ratings are carried out. According to the related data of TV series after processing, multi-level and multi-angle graph correlation analysis and visual display are carried out, and the prediction model proposed in this paper is applied to the movie and television big data ratings prediction to verify its effectiveness.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP181;TP311.13
【参考文献】
相关期刊论文 前10条
1 张文;;大数据分析对中国影视业运营的意义[J];新闻世界;2015年04期
2 王贺;胡志坚;张翌晖;李晨;杨楠;王战胜;;基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测[J];电工技术学报;2014年04期
3 曹莹;苗启广;刘家辰;高琳;;AdaBoost算法研究进展与展望[J];自动化学报;2013年06期
4 胡海青;张琅;张道宏;;供应链金融视角下的中小企业信用风险评估研究——基于SVM与BP神经网络的比较研究[J];管理评论;2012年11期
5 吴俊利;张步涵;王魁;;基于Adaboost的BP神经网络改进算法在短期风速预测中的应用[J];电网技术;2012年09期
6 徐雯;高建华;;基于Spring MVC及MyBatis的Web应用框架研究[J];微型电脑应用;2012年07期
7 柳玉;郭虎全;;基于AdaBoost与BP神经网络的风速预测研究[J];电网与清洁能源;2012年02期
8 师洪涛;杨静玲;丁茂生;王金梅;;基于小波—BP神经网络的短期风电功率预测方法[J];电力系统自动化;2011年16期
9 陈盼;陈皓勇;叶荣;陈天恩;李丹;;基于小波包和支持向量回归的风速预测[J];电网技术;2011年05期
10 宁连举;李萌;;基于因子分析法构建大中型工业企业技术创新能力评价模型[J];科研管理;2011年03期
相关会议论文 前1条
1 陈红丽;张国成;万磊;;预测控制中的建模方法综述[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
相关博士学位论文 前6条
1 楼巍;面向大数据的高维数据挖掘技术研究[D];上海大学;2013年
2 朱林;基于特征加权与特征选择的数据挖掘算法研究[D];上海交通大学;2013年
3 彭柳青;高维高噪声数据聚类中关键问题研究[D];西安电子科技大学;2011年
4 蒋胜利;高维数据的特征选择与特征提取研究[D];西安电子科技大学;2011年
5 王国胜;支持向量机的理论与算法研究[D];北京邮电大学;2008年
6 杨风召;高维数据挖掘中若干关键问题的研究[D];复旦大学;2003年
相关硕士学位论文 前8条
1 江帆;基于因子分析法的区域物流竞争力研究[D];南京大学;2013年
2 康永为;大数据环境下高维数据处理若干问题[D];广西师范大学;2013年
3 王颖;基于神经网络的数据挖掘方法的研究和应用[D];中国地质大学(北京);2012年
4 崔丹丹;K-Means聚类算法的研究与改进[D];安徽大学;2012年
5 任天峰;影响电视剧受众收视行为的需求因素分析[D];东华大学;2007年
6 周正林;基于人工神经网络交通流量预测模型的研究[D];哈尔滨工程大学;2007年
7 关大伟;数据挖掘中的数据预处理[D];吉林大学;2006年
8 李晓明;k-means类型变量加权聚类算法的研究与实现[D];哈尔滨工业大学;2006年
,本文编号:2447947
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2447947.html