面向用户体验的智能应用使用模式与优化的研究
[Abstract]:Nowadays, the mobile Internet is developing rapidly. At the same time, the era of big data has come quietly. "Mobile Internet" and "big data" have become the hottest topics in the current Internet field. Among these, the most direct relationship with the mobile Internet is the mobile APP, and facing the mass of APP, how to choose the right APP, is a headache for ordinary users. In this case, it is important to help users choose the right APP, in large amounts of data to improve the user's experience and save users the cost of use. Based on this situation, this article will from the traffic use aspect, combines the user's use preference, recommends to the user the APP. which conforms to its own usage habit and reduces the traffic use. Firstly, this paper studies how to build the data analysis platform, and realizes the Hadoop analysis platform based on Ambari. On this basis, it classifies and processes the target data set, and then makes some correlative analysis to the data. Secondly, based on the traffic consumption and popularity of APP, this paper establishes the APP recommendation model, and studies the APP recommendation model based on user-related usage preferences. According to the established recommendation model, the users' preference is analyzed, and the similar APP, with less traffic and higher popularity is recommended for users to improve the user's experience. In addition, both users and APP, need to consider the problem of time periods, that is, users prefer to use a certain kind of APP period and APP is used most frequently. Finally, according to the data sets related to the mobile Internet users, this paper validates the APP recommendation model mentioned above. The results show that in the case of satisfying the user's usage preference, The APP recommended for the user can cost less traffic or the recommended APP has a higher popularity than the original APP used by the user. In this way, the user experience has been improved.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP311.56
【参考文献】
相关期刊论文 前2条
1 唐家琳;;移动互联网用户行为比较分析[J];西安邮电大学学报;2013年05期
2 陈克寒;韩盼盼;吴健;;基于用户聚类的异构社交网络推荐算法[J];计算机学报;2013年02期
相关会议论文 前1条
1 冯铭;王保进;蔡建宇;;基于云计算的可重构移动互联网用户行为分析系统的设计[A];CCF NCSC 2011——第二届中国计算机学会服务计算学术会议论文集[C];2011年
相关博士学位论文 前2条
1 祝恒书;面向移动商务的数据挖掘方法及应用研究[D];中国科学技术大学;2014年
2 宝腾飞;面向移动用户数据的情境识别与挖掘[D];中国科学技术大学;2013年
相关硕士学位论文 前9条
1 赵志勇;移动Hadoop集群监控系统的设计与实现[D];北京交通大学;2015年
2 鄢舒源;移动个性化应用推荐系统的设计和实现[D];北京邮电大学;2015年
3 余泓;基于移动终端的移动互联网服务质量及用户行为分析研究[D];安徽大学;2014年
4 李龙飞;基于Hadoop+Mahout的智能终端云应用推荐引擎的研究与实现[D];电子科技大学;2013年
5 李威;移动互联网用户行为分析研究[D];北京邮电大学;2013年
6 潘宇彬;基于个性化推荐的移动应用管理系统的设计与实现[D];西安电子科技大学;2013年
7 杨艳;下一代网络业务用户行为研究[D];西南交通大学;2012年
8 王璐;移动互联网用户行为分析[D];重庆邮电大学;2012年
9 郑桂凤;移动互联网的用户行为分析系统的设计与实现[D];北京邮电大学;2010年
,本文编号:2457383
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2457383.html