基于CPSO算法的钢结构企业多项目管理系统的研究与设计
[Abstract]:Steel structure has been developed rapidly in recent years, and it is a new representative of national green building. The rapid development of the national economy also promotes the steel structure enterprises to move towards a wider world. At the same time, it also puts forward higher requirements for steel structure enterprises. In order to adapt to the changes of the times and obtain greater benefits, enterprises must put management in the first place. The fierce competition of steel structure enterprises is more and more reflected in the ability of enterprises to manage projects. The projects signed by enterprises are more and more large both in scale and in quantity. There are many problems such as resource conflict and time conflict between projects, such as close intermingling, strong coupling and so on. In order to maximize the comprehensive benefit of enterprises, the research on multi-project management of steel structure enterprises is becoming more and more important. In this paper, the characteristics of multi-project management in steel structure enterprises are summarized. Aiming at the difficult problems of multi-project management, it is pointed out that resource conflict, time limit and low degree of informatization are the root causes of the problem. In order to solve the problem of how to allocate resources reasonably and adjust the duration of each project effectively, this paper proposes an improved chaotic particle swarm optimization algorithm (CPSO) combined with critical chain technology for multi-project scheduling management. The addition of critical chain buffer makes management more flexible and safe. Chaotic particle swarm optimization algorithm (CPSO) is based on the original formula, chaotic search is introduced into the basic particle swarm optimization algorithm, the algorithm uses piecewise Logistic chaotic mapping to improve the randomness and initial value sensitivity of chaotic sequences. The traditional linear decreasing inertia weight is improved to the inertia weight which can be adjusted adaptively, then the premature processing mechanism is added in the optimization process, and the processing ability of the algorithm to the local optimal solution is improved. Combined with engineering practice, the effectiveness of this method is proved. In dealing with the problem of multi-project management informatization, this paper takes the research of multi-project management system of a steel structure company in Hebei as the background, and analyzes the requirements of the multi-project management system by using the Unified Modeling language (UML). And designed the system function module and the database structure. Through WebService technology, a multi-project management system platform based on Java EE (enterprise Java application version is established, and the realization of the main functions of the system is explained. This system can meet the needs of small and medium-sized enterprises in project management, and can assist and guide the software development process of enterprise multi-project management system to a certain extent.
【学位授予单位】:河北工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:F426.92;TP311.52
【参考文献】
相关期刊论文 前10条
1 王南;马永;陈笑蓉;;多模式多资源约束下的多项目调度混合算法[J];贵州大学学报(自然科学版);2015年04期
2 张静文;刘耕涛;;鲁棒性视角下的关键链项目调度新方法[J];运筹与管理;2015年03期
3 袁晨弘;;多项目管理下石化施工企业资源配置优化分析[J];中国管理信息化;2015年11期
4 袁剑波;刘越;朱文喜;;关键链技术缓冲区的确定方法研究[J];项目管理技术;2015年03期
5 张琪;屈卫清;熊伟清;;基于混沌粒子群算法的多目标调度优化研究[J];激光杂志;2015年01期
6 别黎;崔南方;赵雁;张小明;;关键链多项目调度中分散式能力约束缓冲设置法[J];管理工程学报;2013年02期
7 王晓宇;钱红兵;;基于UML类图和顺序图的C++代码自动生成方法的研究[J];计算机应用与软件;2013年01期
8 陈君兰;叶春明;;柔性资源受限多项目调度的混沌粒子群算法研究[J];计算机应用研究;2013年01期
9 林晶晶;周国华;;基于粒子群算法的关键链多项目调度管理[J];统计与决策;2012年10期
10 陈燕龙;;微粒群优化的Canny边缘检测方法[J];电脑与电信;2011年05期
相关博士学位论文 前7条
1 王伟鑫;不确定环境下的多项目调度研究[D];重庆大学;2014年
2 金敏力;基于关键链的项目优化调度问题研究[D];哈尔滨工业大学;2013年
3 林晶晶;考虑资源可替代性的关键链识别与缓冲设置方法研究[D];西南交通大学;2011年
4 郭方铭;基于粒子群优化和关键链的多项目计划管理问题研究[D];华中科技大学;2010年
5 祁神军;建设企业集团多项目资源优化配置研究[D];华中科技大学;2009年
6 张浩;基于混沌理论与协同学的企业战略协同机制优化研究[D];哈尔滨工程大学;2009年
7 邓林义;资源受限的项目调度问题及其应用研究[D];大连理工大学;2008年
相关硕士学位论文 前10条
1 郭诚;基于关键链技术的多项目进度计划与动态管理研究[D];河北工程大学;2014年
2 赵丽姝;基于混合遗传算法的协同项目决策系统设计与实现[D];吉林大学;2014年
3 苏慧;基于关键链的多项目优化调度问题研究[D];沈阳理工大学;2014年
4 刘德金;基于关键链的钢结构制造企业多项目计划管理研究[D];重庆大学;2013年
5 陈斐;基于关键链技术的多项目管理研究[D];上海交通大学;2012年
6 陈红安;融合经典搜索策略的微粒群算法及其应用[D];湖南大学;2011年
7 魏嵬;企业多项目管理的资源优化研究[D];北京邮电大学;2010年
8 王帅;面向中小企业的多项目管理系统研究[D];西北大学;2008年
9 王勇;基于微粒群算法的桁架结构优化设计[D];同济大学;2008年
10 易明;优先级下的多项目进度计划优化[D];西南交通大学;2007年
,本文编号:2475079
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2475079.html