新的格上基于身份的分级加密方案
发布时间:2019-05-20 17:11
【摘要】:针对格上基于身份的分级加密(HIBE,hierarchical identity-based encryption)体制中用户密钥提取算法复杂度过高和陷门尺寸膨胀率大的问题,提出一种新的HIBE方案。首先,利用隐式扩展法对HIBE方案中的原像采样算法优化,然后,结合MP12陷门派生算法提出一种高效的HIBE用户密钥提取算法,并基于该算法结合对偶LWE算法完成HIBE方案构造。对比分析表明,所提方案的效率较同类方案在系统建立和用户密钥提取阶段均有提升,陷门尺寸与系统分级深度仅成线性增长关系,且优化后的原像采样算法一定程度上可解决MP12陷门派生算法在陷门派生后高斯参数增长的问题。在标准模型下,方案安全性归约至判定性LWE问题的难解性,并包含严格的安全性证明。
[Abstract]:A new HIBE scheme is proposed to solve the problems of high complexity of user key extraction algorithm and large expansion rate of trap gate size in identity-based hierarchical encryption (HIBE,hierarchical identity-based encryption) scheme. Firstly, the implicit extension method is used to optimize the original image sampling algorithm in HIBE scheme. Then, an efficient HIBE user key extraction algorithm is proposed combined with MP12 trapdoor derivation algorithm, and the HIBE scheme is constructed based on this algorithm combined with dual LWE algorithm. The comparative analysis shows that the efficiency of the proposed scheme is higher than that of the same scheme in the stage of system establishment and user key extraction, and there is only a linear increase relationship between the size of the trap door and the depth of the system classification. To a certain extent, the optimized original image sampling algorithm can solve the problem of Gao Si parameter growth of MP12 trapdoor derivation algorithm after trapdoor derivation. Under the standard model, the security of the scheme is reduced to the difficulty of judging the LWE problem, and contains strict security proof.
【作者单位】: 河南理工大学计算机科学与技术学院;
【基金】:“十三五”国家密码发展基金资助项目(No.MMJJ20170122) 国家自然科学基金资助项目(No.61300216) 河南省科技厅基金资助项目(No.142300410147) 河南省教育厅基金资助项目(No.18A413001,No.16A520013) 河南理工大学博士基金资助项目(No.B2014-044,No.B2016-36)~~
【分类号】:TP309.7
[Abstract]:A new HIBE scheme is proposed to solve the problems of high complexity of user key extraction algorithm and large expansion rate of trap gate size in identity-based hierarchical encryption (HIBE,hierarchical identity-based encryption) scheme. Firstly, the implicit extension method is used to optimize the original image sampling algorithm in HIBE scheme. Then, an efficient HIBE user key extraction algorithm is proposed combined with MP12 trapdoor derivation algorithm, and the HIBE scheme is constructed based on this algorithm combined with dual LWE algorithm. The comparative analysis shows that the efficiency of the proposed scheme is higher than that of the same scheme in the stage of system establishment and user key extraction, and there is only a linear increase relationship between the size of the trap door and the depth of the system classification. To a certain extent, the optimized original image sampling algorithm can solve the problem of Gao Si parameter growth of MP12 trapdoor derivation algorithm after trapdoor derivation. Under the standard model, the security of the scheme is reduced to the difficulty of judging the LWE problem, and contains strict security proof.
【作者单位】: 河南理工大学计算机科学与技术学院;
【基金】:“十三五”国家密码发展基金资助项目(No.MMJJ20170122) 国家自然科学基金资助项目(No.61300216) 河南省科技厅基金资助项目(No.142300410147) 河南省教育厅基金资助项目(No.18A413001,No.16A520013) 河南理工大学博士基金资助项目(No.B2014-044,No.B2016-36)~~
【分类号】:TP309.7
【相似文献】
相关期刊论文 前10条
1 徐海霞;李红达;李宝;;多陷门水银承诺方案(英文)[J];中国科学院研究生院学报;2008年02期
2 王晟;陈勤;张e,
本文编号:2481805
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2481805.html