基于大数据的高考志愿数据分析关键技术研究
[Abstract]:With the popularity of the online voluntary filling system for college entrance examination, the enrollment management unit has mastered a large number of candidates to fill in the data. However, due to the lack of an efficient analysis platform, these data can not be used effectively. With the emergence of big data technology, this problem can be solved. Under this background, this paper makes an in-depth study on the popular Hadoop distributed processing platform, and carries out a series of research work around the analysis of the voluntary filling data of the college entrance examination. The main research contents and innovations are as follows: (1) the architecture and principle of distributed processing platform are analyzed and studied, and the architecture of Hadoop distributed processing platform is described, and the Hadoop file system is analyzed. The structure and design idea of MapReduce computing model. (2) according to the basic process of big data processing, combined with the characteristics of college entrance examination voluntary filling data, and on the basis of drawing lessons from Hadoop design pattern, a core control node is designed. A distributed data processing model composed of data preprocessing node, computing node and monitoring node is proposed and implemented to meet the needs of voluntary data analysis of college entrance examination. (3) A task scheduling algorithm based on genetic algorithm is proposed and implemented. The execution time and cost of the task are taken into account to reduce the task consumption time and save the operation cost. The experimental results show that compared with the FIFO scheduling algorithm used in Hadoop platform, the total task response time and task execution cost of this algorithm are significantly reduced. (4) an improved cooperative filtering voluntary recommendation algorithm for college entrance examination is proposed. The parallelization of the algorithm is realized. The experimental results show that the algorithm can provide accurate voluntary recommendation for college entrance examination candidates. By comparing the execution efficiency of serial algorithm and parallel algorithm, the running efficiency of the algorithm under different number of nodes is verified.
【学位授予单位】:长春理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G637;TP311.13
【参考文献】
相关期刊论文 前10条
1 陈骞;;韩国发展大数据的计划与行动[J];上海信息化;2015年10期
2 ;国务院关于印发促进大数据发展行动纲要的通知[J];中华人民共和国国务院公报;2015年26期
3 郭嘉凯;;大数据战略[J];软件和集成电路;2015年08期
4 廖建新;;大数据技术的应用现状与展望[J];电信科学;2015年07期
5 徐兰静;李珊;严钊;;基于协同过滤的高考志愿推荐系统[J];计算机系统应用;2015年07期
6 李学龙;龚海刚;;大数据系统综述[J];中国科学:信息科学;2015年01期
7 李彬;;大数据背景下日本信息产业发展成效与问题[J];东北亚学刊;2015年01期
8 闫建;高华丽;;发达国家大数据发展战略的启示[J];理论探索;2015年01期
9 冷亚军;陆青;梁昌勇;;协同过滤推荐技术综述[J];模式识别与人工智能;2014年08期
10 张引;陈敏;廖小飞;;大数据应用的现状与展望[J];计算机研究与发展;2013年S2期
相关博士学位论文 前1条
1 林文辉;基于Hadoop的海量网络数据处理平台的关键技术研究[D];北京邮电大学;2014年
相关硕士学位论文 前10条
1 张永芳;基于Hadoop平台的并行数据挖掘算法研究[D];安徽理工大学;2016年
2 汲磊举;大数据环境下动车组故障关联关系分析关键技术研究与实现[D];北京交通大学;2016年
3 陈敏伟;大数据技术在铁路货运电子商务系统中的基本应用研究[D];西南交通大学;2015年
4 党永亮;大数据分析在移动通信网络优化中的应用研究[D];华中师范大学;2015年
5 郭凯振;基于Hadoop的分布式计算系统的设计与实现[D];大连海事大学;2015年
6 王淑芬;基于大数据的制造运行监测与分析平台研究[D];广东工业大学;2014年
7 李步源;基于云计算的协同过滤算法并行化研究[D];郑州大学;2013年
8 赵莎;分布式海量数据处理系统计算节点的设计与实现[D];电子科技大学;2012年
9 杨浩杰;高考志愿填报的数据分析研究[D];河南大学;2011年
10 殷员分;高考考生志愿数据分析与挖掘研究[D];西南大学;2010年
,本文编号:2495155
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2495155.html