基于协同训练的社交网络垃圾用户检测的研究
[Abstract]:In recent years, with the continuous development and maturity of web 2.0 technology, social network, as a communication tool of human society, has brought great convenience to the communication and communication between people. However, a large number of junk information and junk users in social networks seriously affect the communication between people. These junk information and garbage users not only consume a lot of network resources, but also may damage the rights and interests of legitimate users. The existing social network spam and junk user detection technology is usually based on a large number of marked data and adopts the strategy of supervised learning. However, manual marking of data is a complex and error-prone work, and needs to consume a lot of manpower and material resources. Therefore, it is necessary to study how to use less tagged data to detect spam and junk users. In order to solve the above problems, this paper proposes a semi-supervised classification framework to detect junk users in social networks. This framework combines collaborative training with clustering algorithm. Firstly, some samples with large amount of information and representative samples are identified and marked by K center point clustering algorithm as the initial subset of semi-supervised learning, and then collaborative training is carried out by using the content and behavior characteristics of users. The collaborative training classification framework constantly forecasts the user's mark, takes the user with high confidence and meets a certain threshold as the new training set, and retrains the learning model. Finally, an optimized classification model is obtained by continuous iteration. This paper first introduces the harm of social network garbage and the necessity of detecting social network garbage users, then summarizes the detection technology and related theories of garbage cheating in social network, then expounds in detail the algorithm and implementation of the semi-supervised classification detection framework based on collaborative training, and finally carries on the experiment and analysis on the real Twitter data set. The results verify the effectiveness and correctness of the proposed framework. The experimental results show that the detection framework proposed in this paper can still train the correct model under the condition of small number of marking samples, and the experimental effect is remarkable.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP393.09;TP311.13
【相似文献】
相关期刊论文 前10条
1 ;基于位置的手机社交网络“贝多”正式发布[J];中国新通信;2008年06期
2 曹增辉;;社交网络更偏向于用户工具[J];信息网络;2009年11期
3 ;美国:印刷企业青睐社交网络营销新方式[J];中国包装工业;2010年Z1期
4 李智惠;柳承烨;;韩国移动社交网络服务的类型分析与促进方案[J];现代传播(中国传媒大学学报);2010年08期
5 贾富;;改变一切的社交网络[J];互联网天地;2011年04期
6 谭拯;;社交网络:连接与发现[J];广东通信技术;2011年07期
7 陈一舟;;社交网络的发展趋势[J];传媒;2011年12期
8 殷乐;;全球社交网络新态势及文化影响[J];新闻与写作;2012年01期
9 许丽;;社交网络:孤独年代的集体狂欢[J];上海信息化;2012年09期
10 李玲丽;吴新年;;科研社交网络的发展现状及趋势分析[J];图书馆学研究;2013年01期
相关会议论文 前10条
1 赵云龙;李艳兵;;社交网络用户的人格预测与关系强度研究[A];第七届(2012)中国管理学年会商务智能分会场论文集(选编)[C];2012年
2 宫广宇;李开军;;对社交网络中信息传播的分析和思考——以人人网为例[A];首届华中地区新闻与传播学科研究生学术论坛获奖论文[C];2010年
3 杨子鹏;乔丽娟;王梦思;杨雪迎;孟子冰;张禹;;社交网络与大学生焦虑缓解[A];心理学与创新能力提升——第十六届全国心理学学术会议论文集[C];2013年
4 毕雪梅;;体育虚拟社区中的体育社交网络解析[A];第九届全国体育科学大会论文摘要汇编(4)[C];2011年
5 杜p,
本文编号:2501193
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2501193.html