当前位置:主页 > 科技论文 > 软件论文 >

融合主题模型和协同过滤的多样化移动应用推荐

发布时间:2019-07-10 12:21
【摘要】:随着移动应用的急速增长,手机助手等移动应用获取平台也面临着信息过载的问题.面对大量的移动应用,用户很难找到最适合的;而另一方面,长尾应用淹没在资源池中不易被人所知.已有推荐方法多注重推荐准确率,忽视了多样性,推荐结果中多是下载量高的应用,使得推荐系统的数据积累越来越偏向于热门应用,导致长期的推荐效果越来越差.针对这一问题,首先改进了两种推荐方法,提出了将用户的主题模型和应用的主题模型与MF相结合的LDA_MF模型,以及将应用的标签信息和用户行为数据同时加以考虑的LDA_CF算法.为了结合不同算法的优点,在保证推荐准确率的条件下提升推荐结果的多样性,提出了融合LDA_MF,LDA_CF以及经典的基于物品的协同过滤模型的混合推荐算法.使用真实的大数据评测所提推荐算法,结果显示,所提推荐方法能够得到推荐多样性更好且准确率更高的结果.
[Abstract]:With the rapid growth of mobile applications, mobile application acquisition platforms such as mobile assistants are also facing the problem of information overload. In the face of a large number of mobile applications, it is difficult for users to find the most suitable; on the other hand, long-tailed applications are not easily known in the resource pool. The existing recommendation methods pay more attention to the recommendation accuracy and ignore the diversity. Most of the recommendation results are the applications with high downloads, which makes the data accumulation of the recommendation system more and more inclined to hot applications, resulting in the long-term recommendation effect getting worse and worse. In order to solve this problem, two recommendation methods are improved, and a LDA_MF model which combines the user's topic model and the applied topic model with MF is proposed, and the LDA_CF algorithm which considers the applied label information and user behavior data at the same time is proposed. In order to combine the advantages of different algorithms and improve the diversity of recommendation results under the condition of ensuring the accuracy of recommendation, a hybrid recommendation algorithm combining LDA_MF,LDA_CF and classical object-based collaborative filtering model is proposed. Using the real big data to evaluate the proposed recommendation algorithm, the results show that the proposed recommendation method can get better recommendation diversity and higher accuracy.
【作者单位】: 数据工程与知识工程教育部重点实验室(中国人民大学信息学院);清华大学经济管理学院;
【基金】:国家自然科学基金(71272029,71490724,61472426) 国家高技术研究发展计划(863)(2014AA015204) 北京市自然科学基金(4152026)~~
【分类号】:TP391.3

【相似文献】

相关期刊论文 前10条

1 杨风召;;一种基于特征表的协同过滤算法[J];计算机工程与应用;2007年06期

2 王岚;翟正军;;基于时间加权的协同过滤算法[J];计算机应用;2007年09期

3 曾子明;张李义;;基于多属性决策和协同过滤的智能导购系统[J];武汉大学学报(工学版);2008年02期

4 张富国;;用户多兴趣下基于信任的协同过滤算法研究[J];小型微型计算机系统;2008年08期

5 侯翠琴;焦李成;张文革;;一种压缩稀疏用户评分矩阵的协同过滤算法[J];西安电子科技大学学报;2009年04期

6 廖新考;;基于用户特征和项目属性的混合协同过滤推荐[J];福建电脑;2010年07期

7 沈磊;周一民;李舟军;;基于心理学模型的协同过滤推荐方法[J];计算机工程;2010年20期

8 徐红;彭黎;郭艾寅;徐云剑;;基于用户多兴趣的协同过滤策略改进研究[J];计算机技术与发展;2011年04期

9 焦晨斌;王世卿;;基于模型填充的混合协同过滤算法[J];微计算机信息;2011年11期

10 郑婕;鲍海琴;;基于协同过滤推荐技术的个性化网络教学平台研究[J];科技风;2012年06期

相关会议论文 前10条

1 沈杰峰;杜亚军;唐俊;;一种基于项目分类的协同过滤算法[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年

2 周军锋;汤显;郭景峰;;一种优化的协同过滤推荐算法[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年

3 董全德;;基于双信息源的协同过滤算法研究[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年

4 张光卫;康建初;李鹤松;刘常昱;李德毅;;面向场景的协同过滤推荐算法[A];中国系统仿真学会第五次全国会员代表大会暨2006年全国学术年会论文集[C];2006年

5 李建国;姚良超;汤庸;郭欢;;基于认知度的协同过滤推荐算法[A];第26届中国数据库学术会议论文集(B辑)[C];2009年

6 王明文;陶红亮;熊小勇;;双向聚类迭代的协同过滤推荐算法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年

7 胡必云;李舟军;王君;;基于心理测量学的协同过滤相似度方法(英文)[A];NDBC2010第27届中国数据库学术会议论文集(B辑)[C];2010年

8 林丽冰;师瑞峰;周一民;李月雷;;基于双聚类的协同过滤推荐算法[A];2008'中国信息技术与应用学术论坛论文集(一)[C];2008年

9 罗喜军;王韬丞;杜小勇;刘红岩;何军;;基于类别的推荐——一种解决协同推荐中冷启动问题的方法[A];第二十四届中国数据库学术会议论文集(研究报告篇)[C];2007年

10 黄创光;印鉴;汪静;刘玉葆;王甲海;;不确定近邻的协同过滤推荐算法[A];NDBC2010第27届中国数据库学术会议论文集A辑一[C];2010年

相关博士学位论文 前10条

1 纪科;融合上下文信息的混合协同过滤推荐算法研究[D];北京交通大学;2016年

2 程殿虎;基于协同过滤的社会网络推荐系统关键技术研究[D];中国海洋大学;2015年

3 于程远;基于QoS的Web服务推荐技术研究[D];上海交通大学;2015年

4 李聪;电子商务推荐系统中协同过滤瓶颈问题研究[D];合肥工业大学;2009年

5 郭艳红;推荐系统的协同过滤算法与应用研究[D];大连理工大学;2008年

6 罗恒;基于协同过滤视角的受限玻尔兹曼机研究[D];上海交通大学;2011年

7 薛福亮;电子商务协同过滤推荐质量影响因素及其改进机制研究[D];天津大学;2012年

8 高e,

本文编号:2512606


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2512606.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4181a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com