当前位置:主页 > 科技论文 > 软件论文 >

融合项目标签信息面向排序的社会化推荐算法

发布时间:2020-10-13 17:37
   近年来,推荐系统越来越受到人们的关注,按照应用场景主要分为评分预测和Top-K推荐。考虑到传统评分推荐系统和Top-K排序推荐系统只考虑用户和项目的二元评分信息,具有一定的局限性,因此扩展了一种基于列表排序学习的矩阵分解方法。一方面,充分考虑用户之间关注关系。首先通过用户之间的关注关系计算用户之间的信任度,接着通过用户之间的信任度在原始模型的损失函数中添加用户社交约束项,使相互信任的用户偏好向量尽可能接近。另一方面,计算项目所拥有标签的权重,并以此计算项目之间的标签相似度,再将项目的标签约束项添加至损失函数中。在真实Epinions和百度电影数据集中的实验结果表明,该方法的NDCG值和原始模型相比具有一定的提高,有效地提高了推荐准确率。
【文章目录】:
1 引言
2 相关工作
    2.1 概率矩阵分解
    2.2 融合社交网络和标签信息的推荐方法
    2.3 面向排序的推荐方法
3 融合项目标签信息面向排序的社会化推荐算法
    3.1 社交网络中信任度
    3.2 项目的标签相似度
    3.3 融合项目标签信息面向排序的社会化推荐算法
        3.3.1 Top-one概率
        3.3.2 融合项目标签信息和用户社交信息
    3.4 模型参数训练
4 实验结果与分析
    4.1 数据集描述
        4.1.1 百度电影数据集
        4.1.2 Epinions数据集
    4.2 评价指标
    4.3 对比实验
    4.4 参数设置
5 结束语

【相似文献】

相关期刊论文 前10条

1 史加荣;郑秀云;周水生;;矩阵补全算法研究进展[J];计算机科学;2014年04期

2 李聪;骆志刚;;用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型[J];自动化学报;2011年09期

3 袁运祥;基于矩阵分解的子结构法求解介绍[J];计算机应用通讯;1981年00期

4 张海建;;分布式矩阵分解算法在推荐系统中的研究与应用[J];科技通报;2013年12期

5 何朕,赵文斌,于达仁;摄动矩阵的分解[J];电机与控制学报;2004年03期

6 李华云;;F范数及矩阵分解实例研究[J];现代情报;2008年10期

7 邹理和;;系数矩阵分解二维谱估值[J];信号处理;1985年03期

8 陈伯伦;陈崚;邹盛荣;徐秀莲;;基于矩阵分解的二分网络社区挖掘算法[J];计算机科学;2014年02期

9 王锋;赵志文;牟盛;;整数提升小波多相矩阵分解系数的快速提取算法[J];中国图象图形学报;2012年03期

10 段华杰;;考虑时间效应的矩阵分解技术在推荐系统中的应用[J];微型电脑应用;2013年03期


相关博士学位论文 前5条

1 李英明;矩阵分解在数据挖掘中的应用[D];浙江大学;2014年

2 赵科科;低秩矩阵分解的正则化方法与应用[D];浙江大学;2012年

3 郭亦鸿;利用穆勒矩阵分解定量测量各向异性介质微观结构[D];清华大学;2014年

4 胡惠轶;基于分解的系统辨识方法研究[D];江南大学;2014年

5 陈根浪;基于社交媒体的推荐技术若干问题研究[D];浙江大学;2012年


相关硕士学位论文 前10条

1 秦晓晖;个性化微博推荐方法研究[D];华南理工大学;2015年

2 刘凤林;基于矩阵分解的协同过滤推荐算法研究[D];南京理工大学;2015年

3 李源鑫;基于提升的信任融合矩阵分解推荐算法[D];福建师范大学;2015年

4 陈洪涛;基于矩阵分解的常规与长尾捆绑推荐的博弈研究[D];福建师范大学;2015年

5 张济龙;基于概率矩阵分解的推荐算法研究[D];燕山大学;2015年

6 邓志豪;基于物品相似度和主题回归的矩阵分解推荐算法[D];浙江大学;2015年

7 余露;利用矩阵分解算法建模数据稀疏环境下用户协同行为[D];杭州师范大学;2015年

8 倪泽明;混合用户行为建模的概率矩阵分解推荐算法[D];浙江大学;2015年

9 丁浩;基于协同矩阵分解的药物靶标相互作用关系预测[D];复旦大学;2014年

10 吴世伟;社会网络中的链接分析[D];复旦大学;2014年



本文编号:2839475

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2839475.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a85c3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com