基于深度神经网络的信息系统用户异常行为预测研究
发布时间:2023-04-10 17:35
随着企业信息化水平的不断提升,企业核心业务越来越依赖于信息系统的可靠运行。对企业而言,任何信息系统用户所进行的异常操作,都可能会给企业带来不可估量的损失。因此,用户异常行为对企业造成的负面影响是一个无法忽视的问题,用户异常行为检测也成为当前学者的研究热点。在各种用户异常行为检测方法中,数据驱动方法可以适应数据的复杂变化,所以采用数据驱动的方法进行用户异常行为检测。由于存在多种多样的数据驱动方法,因此,如何选择一种高效准确的用户异常行为预测方法,成为了本文的研究问题之一。此外,目前企业中的异常检测软件大多针对系统的软硬件本身而开发,很少有专门检测用户行为的系统,而且用户异常行为的分析处理过程耗时较长,有较多步骤都可实施自动化操作。因此,亟需开发一个用于预测用户异常行为的系统,帮助企业提高数据处理效率,增加数据价值。为了解决这两个问题,本文以某船舶企业为例,采用特征工程的理论和方法,对信息系统日志数据进行了特征处理,并对相关分类模型与算法进行了详细的分析阐述和实验研究,并基于此设计了预测系统,最后提炼出了一个用户异常行为预测流程。本文主要研究和完成的工作如下:(1)日志数据的异常行为分类和...
【文章页数】:96 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第1章 绪论
1.1 研究背景
1.2 研究意义
1.3 研究综述
1.3.1 文献检索和分析
1.3.2 信息系统日志研究
1.3.3 用户异常行为研究
1.3.4 异常行为检测技术研究
1.3.5 现有研究述评
1.4 研究内容、方法与技术路线图
1.4.1 研究内容
1.4.2 研究方法
1.4.3 技术路线图
1.5 研究创新点
1.6 本章小结
第2章 相关理论与方法
2.1 特征工程理论
2.1.1 特征匹配
2.1.2 特征构造
2.1.3 特征编码
2.1.4 特征缩放
2.1.5 特征降维
2.2 深度神经网络模型
2.2.1 深度学习与深度神经网络概述
2.2.2 模型基本结构
2.2.3 模型参数调节
2.2.4 激活函数选择
2.2.5 模型拟合问题
2.3 用于对比性能的统计方法和机器学习算法
2.3.1 多重线性回归方法
2.3.2 支持向量机分类方法
2.4 模型效果评估方法
2.5 本章小结
第3章 基于信息系统日志的异常行为分类与特征工程构建
3.1 数据收集与预处理
3.1.1 数据收集
3.1.2 数据预处理
3.2 异常行为分类
3.3 特征工程构建
3.3.1 原始特征提取
3.3.2 目标特征构造
3.3.3 特征数值化编码
3.3.4 特征分级缩放
3.3.5 随机森林降维
3.4 异常行为发生率统计
3.5 本章小结
第4章 基于DNN的用户异常行为预测
4.1 DNN模型构建与参数调整
4.2 DNN模型分类效果分析
4.3 其余模型分类效果分析
4.3.1 MLR分类
4.3.2 SVM分类
4.4 预测结果对比分析
4.5 本章小结
第5章 基于DNN的用户异常行为预测系统设计与实现
5.1 整体目标和需求分析
5.1.1 系统整体目标
5.1.2 功能需求分析
5.2 开发运行的软件环境
5.3 系统运行流程设计
5.4 系统实现
5.5 用户异常行为预测流程归纳
5.6 本章小结
第6章 结论与展望
6.1 研究结论
6.2 研究不足和展望
参考文献
附录
攻读硕士学位期间所取得的相关科研成果
致谢
大摘要
本文编号:3788540
【文章页数】:96 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第1章 绪论
1.1 研究背景
1.2 研究意义
1.3 研究综述
1.3.1 文献检索和分析
1.3.2 信息系统日志研究
1.3.3 用户异常行为研究
1.3.4 异常行为检测技术研究
1.3.5 现有研究述评
1.4 研究内容、方法与技术路线图
1.4.1 研究内容
1.4.2 研究方法
1.4.3 技术路线图
1.5 研究创新点
1.6 本章小结
第2章 相关理论与方法
2.1 特征工程理论
2.1.1 特征匹配
2.1.2 特征构造
2.1.3 特征编码
2.1.4 特征缩放
2.1.5 特征降维
2.2 深度神经网络模型
2.2.1 深度学习与深度神经网络概述
2.2.2 模型基本结构
2.2.3 模型参数调节
2.2.4 激活函数选择
2.2.5 模型拟合问题
2.3 用于对比性能的统计方法和机器学习算法
2.3.1 多重线性回归方法
2.3.2 支持向量机分类方法
2.4 模型效果评估方法
2.5 本章小结
第3章 基于信息系统日志的异常行为分类与特征工程构建
3.1 数据收集与预处理
3.1.1 数据收集
3.1.2 数据预处理
3.2 异常行为分类
3.3 特征工程构建
3.3.1 原始特征提取
3.3.2 目标特征构造
3.3.3 特征数值化编码
3.3.4 特征分级缩放
3.3.5 随机森林降维
3.4 异常行为发生率统计
3.5 本章小结
第4章 基于DNN的用户异常行为预测
4.1 DNN模型构建与参数调整
4.2 DNN模型分类效果分析
4.3 其余模型分类效果分析
4.3.1 MLR分类
4.3.2 SVM分类
4.4 预测结果对比分析
4.5 本章小结
第5章 基于DNN的用户异常行为预测系统设计与实现
5.1 整体目标和需求分析
5.1.1 系统整体目标
5.1.2 功能需求分析
5.2 开发运行的软件环境
5.3 系统运行流程设计
5.4 系统实现
5.5 用户异常行为预测流程归纳
5.6 本章小结
第6章 结论与展望
6.1 研究结论
6.2 研究不足和展望
参考文献
附录
攻读硕士学位期间所取得的相关科研成果
致谢
大摘要
本文编号:3788540
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/3788540.html