基于深度卷积神经网络的人体动作识别
本文关键词:基于深度卷积神经网络的人体动作识别,由笔耕文化传播整理发布。
【摘要】:针对人体动作识别问题,提出一种基于智能手机加速传感器数据并运用深度卷积神经网络进行分类识别的方法,可以有效地分类人体的走、坐、躺、跑、站五类动作.该方法模型由输入层、两层卷积层、两层池化层、一层全连接层和输出层组成,使用滑动窗口折叠法将传感器数据变换为类似于三通道的RGB图像格式,自动提取加速传感器数据的特征,对各个动作进行分类,免去了传统方法繁琐的特征提取工程.该方法在Actitracker开源数据库上达到了0.912 6的识别率,验证了该方法的可行性.
【作者单位】: 北京邮电大学网络技术研究院;
【关键词】: 动作识别 卷积神经网络 深度学习 机器学习 加速传感器
【基金】:国家国际科技合作与交流专项资助项目(2013DFE13130)
【分类号】:TP391.41;TP183
【正文快照】: 随着互联网的发展,智能手机以及可穿戴设备已经十分普及.这些新兴的设备和新的需求都需要对人体的动作进行识别.早期的人体动作识别主要依赖于人体不同部位放置的多个传感器[1],基于智能手机和可穿戴设备,如手环、手表的传感器的人体动作识别已成为主流方法[6-8].传统的机器学
【相似文献】
中国期刊全文数据库 前10条
1 胡雅琴;;动作识别技术及其发展[J];电视技术;2013年S2期
2 倪世宏,史忠科,谢川,王彦鸿;军用战机机动飞行动作识别知识库的建立[J];计算机仿真;2005年04期
3 程祥;;人体动作识别的研究[J];电脑知识与技术;2006年20期
4 黄飞跃;徐光yP;;视角无关的动作识别[J];软件学报;2008年07期
5 徐光yP;曹媛媛;;动作识别与行为理解综述[J];中国图象图形学报;2009年02期
6 黄丽鸿;高智勇;刘海华;;基于脉冲神经网络的人体动作识别[J];现代科学仪器;2012年02期
7 周艳青;王磊;;基于视觉的人体动作识别综述[J];山东轻工业学院学报(自然科学版);2012年01期
8 曹琨;;基于检索表的实时动作识别技术研究[J];中外企业家;2014年05期
9 刘博;安建成;;基于关键姿势的人体动作识别[J];电视技术;2014年05期
10 王燕;张绍武;凌志刚;潘泉;;基于图嵌入线性拓展方法的人体动作识别研究[J];计算机仿真;2008年10期
中国重要会议论文全文数据库 前7条
1 袁飞;程韬波;周松斌;肖先文;;基于加速度特征的可拓动作识别方法[A];广州市仪器仪表学会2009年学术年会论文集[C];2010年
2 黄飞跃;徐光yP;;自然的人体动作识别[A];第三届和谐人机环境联合学术会议(HHME2007)论文集[C];2007年
3 叶喜勇;陶霖密;王国建;邸慧军;;视角无关的人体躯干动作识别[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
4 黄艳欢;叶少珍;;连续动作分割综述[A];第十四届全国图象图形学学术会议论文集[C];2008年
5 董力赓;陶霖密;徐光yP;;头部姿态和动作的识别与理解[A];第三届和谐人机环境联合学术会议(HHME2007)论文集[C];2007年
6 朱岩;赵旭;刘允才;;基于稀疏编码和局部时空特征的人体动作识别[A];第十五届全国图象图形学学术会议论文集[C];2010年
7 席旭刚;金燕;朱海港;高云园;;基于小波包熵和支持向量机的手部肌电信号动作识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
中国重要报纸全文数据库 前2条
1 本报记者 陈丹;人与机器的“对话”[N];科技日报;2010年
2 ;凌空敲键盘?无线计算机手套问世[N];中国计算机报;2004年
中国博士学位论文全文数据库 前10条
1 谌先敢;现实环境下的人体动作识别[D];武汉大学;2012年
2 陈渊博;视频序列中的人体动作识别[D];北京邮电大学;2015年
3 刘翠微;视频中人的动作分析与理解[D];北京理工大学;2015年
4 陈萌;基于李代数高斯表示的动作识别方法研究[D];华中科技大学;2016年
5 李拟s,
本文编号:490169
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/490169.html