RGB-D图像分类方法研究综述
本文关键词:RGB-D图像分类方法研究综述
更多相关文章: 图像处理 目标识别 场景分类 特征提取 Kinect RGB-D图像
【摘要】:采用新型3D传感器能够便捷地同时获取多场景、多视觉和多目标彩色和深度信息的RGB-D图像,利用其在物体重叠和遮挡下深度信息对颜色和亮度的不变特点,有效提高RGB-D图像分类的精度。对微软Kinect设备的发展及原理做详细介绍;介绍了现有的RGB-D数据集;对现有RGB-D图像特征提取与分类方法进行了归纳、分析和比较;阐述RGB-D图像分类的发展趋势。
【作者单位】: 华南农业大学数学与信息学院;华南农业大学电子工程学院;
【关键词】: 图像处理 目标识别 场景分类 特征提取 Kinect RGB-D图像
【基金】:广东省科技计划(2015A020209148;2015A020224038;2015A020209124;2016A050502050)
【分类号】:TP391.41
【正文快照】: 1引言RGB图像分类是计算机视觉中重要的基础问题,已广泛应用于国防和民用的许多领域。但在实际应用中,RGB图像在目标重叠、遮挡、光照变化大、阴影和场景复杂等情况下,存在目标识别率低、场景分类效果不佳及稳健性差等问题。为克服这些困难,近几年利用RGB-D图像进行目标识别和
【相似文献】
中国期刊全文数据库 前10条
1 陈戏墨,徐红兵,李志铭,谢铉洋,李曦,李扬彬;数据挖掘在医学图像分类中的应用[J];现代计算机(专业版);2005年01期
2 冀翠萍;孟祥增;;基于内容的图像分类体系[J];电脑知识与技术(学术交流);2007年07期
3 杨杰;陈晓云;;图像分类方法比较研究[J];微计算机应用;2007年06期
4 杨文潮;姜志坚;;图像分类技术研究[J];福建电脑;2008年08期
5 葛寒娟;邱桃荣;王剑;卢强;李北;刘韬;聂斌;;一种基于相容信息粒原理的图像分类方法[J];广西师范大学学报(自然科学版);2008年03期
6 王军;王员云;;粒计算及其在图像分类中的应用研究[J];计算机工程与科学;2009年03期
7 吴军;王士同;;基于正负模糊规则的相结合的图像分类[J];计算机应用;2011年01期
8 吴军;王士同;赵鑫;;正负模糊规则系统、极限学习机与图像分类[J];中国图象图形学报;2011年08期
9 郝永宽;王威;聂维同;王德强;;图像分类与聚类分析[J];数字技术与应用;2011年12期
10 蒋玲芳;张伟;司梦;;基于词袋模型的电子报图像分类方法研究[J];信阳师范学院学报(自然科学版);2013年01期
中国重要会议论文全文数据库 前10条
1 郑海红;曾平;;一种基于图像分类的逆半调算法[A];’2004计算机应用技术交流会议论文集[C];2004年
2 文振q;欧阳杰;朱为总;;基于语义特征与支持向量机的图像分类[A];中国电子学会第十六届信息论学术年会论文集[C];2009年
3 王海峰;管亮;;基于颜色特征的图像分类技术在油品分析中的应用[A];中国仪器仪表学会第六届青年学术会议论文集[C];2004年
4 陈思坤;吴洪;;基于图分块并利用空间金字塔的医学图像分类[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
5 张淑雅;赵晓宇;赵一鸣;李均利;;基于SVM的图像分类[A];第十三届全国图象图形学学术会议论文集[C];2006年
6 李博;韩萍;;基于压缩感知和SVM的极化SAR图像分类[A];第二十七届中国(天津)2013IT、网络、信息技术、电子、仪器仪表创新学术会议论文集[C];2013年
7 朱松豪;胡娟娟;孙伟;;基于非欧空间高阶统计的图像分类方法[A];第25届中国控制与决策会议论文集[C];2013年
8 潘海为;李建中;张炜;;基于像素聚类的脑部医学图像分类[A];第二十届全国数据库学术会议论文集(研究报告篇)[C];2003年
9 吴霜;张一飞;修非;王大玲;鲍玉斌;于戈;;基于兴趣点特征提取的医学图像分类[A];第二十四届中国数据库学术会议论文集(研究报告篇)[C];2007年
10 武进;尹恺;王长明;张家才;;SVDM在蔬菜病害图像分类中的应用[A];图像图形技术与应用进展——第三届图像图形技术与应用学术会议论文集[C];2008年
中国博士学位论文全文数据库 前10条
1 胡尧;基于低秩矩阵估计的机器学习算法分析[D];浙江大学;2015年
2 李昌英(Ri ChangYong);基于上下文信息的语义图像分类研究[D];浙江大学;2014年
3 陈博;基于集成学习和特征选择的极化SAR地物分类[D];西安电子科技大学;2015年
4 王晓东;基于稀疏特征学习的复杂图像分类[D];西安电子科技大学;2014年
5 顾迎节;面向图像分类的主动学习算法研究[D];南京理工大学;2015年
6 赵鑫;图像分类中的判别性增强研究[D];中国科学技术大学;2013年
7 杨冰;基于艺术风格的绘画图像分类研究[D];浙江大学;2013年
8 丁建睿;基于多示例学习的浅表器官超声图像分类方法研究[D];哈尔滨工业大学;2012年
9 贾世杰;基于内容的商品图像分类方法研究[D];大连理工大学;2013年
10 李晓旭;基于概率主题模型的图像分类和标注的研究[D];北京邮电大学;2012年
中国硕士学位论文全文数据库 前10条
1 张明静;基于改进遗传算法的分块综合特征加权图像分类研究[D];华南理工大学;2015年
2 李函怡;融合主动学习的半监督技术在图像分类中的应用研究[D];西南大学;2015年
3 王亚凤;基于多特征的主动学习方法在图像分类中的应用研究[D];河北工程大学;2015年
4 陈荣安;基于改进的Bag-of-Features模型的图像分类研究[D];兰州大学;2015年
5 钟畏丹;基于HSV和纹理特征的图像分类[D];华中师范大学;2015年
6 焦阳;基于主动学习的多标签图像分类方法研究[D];苏州大学;2015年
7 王腾川;基于主动学习的SAR图像分类方法研究[D];上海交通大学;2015年
8 NGUYEN QUANG KHANH;基于极化SAR目标信息提取与SVM分类[D];哈尔滨工业大学;2015年
9 王朔琛;基于半监督支持向量机的图像分类方法研究[D];陕西师范大学;2015年
10 杨东坡;基于深度学习的商品图像分类[D];大连交通大学;2015年
,本文编号:819472
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/819472.html