基于改进相似度的协同过滤算法研究
本文关键词:基于改进相似度的协同过滤算法研究
更多相关文章: 协同过滤 Pearson相似度 共同评分项目 电影推荐
【摘要】:协同过滤利用邻居用户的偏好对目标用户的偏好进行推荐预测,相似度计算是其关键。传统的相似度计算忽略了用户共同评分项目数与用户平均评分的影响,以至于在数据稀疏时不能很好地度量用户间的相似度。提出了两个修正因子来改进传统相似度,同时改进了协同过滤算法,将其应用于电影推荐。仿真结果表明,在电影推荐中,基于改进后相似度计算的协同过滤算法能取得比传统算法更低的MAE值,提高了电影推荐质量。
【作者单位】: 电子科技大学数学科学学院;新疆财经大学计算机科学与工程学院;
【关键词】: 协同过滤 Pearson相似度 共同评分项目 电影推荐
【基金】:国家自然科学基金(61163066)资助
【分类号】:TP391.3
【正文快照】: 到稿日期:2015-10-13返修日期:2016-01-25本文受国家自然科学基金(61163066)资助。1前言随着互联网和信息技术的迅速发展,影视行业也得到充分的发挥空间,越来越多的电影丰富着我们的生活。然而,面对数不胜数的电影,人们寻找自己感兴趣的电影的能力却没有得到相应的提高。有些
【相似文献】
中国期刊全文数据库 前10条
1 杨风召;;一种基于特征表的协同过滤算法[J];计算机工程与应用;2007年06期
2 王岚;翟正军;;基于时间加权的协同过滤算法[J];计算机应用;2007年09期
3 曾子明;张李义;;基于多属性决策和协同过滤的智能导购系统[J];武汉大学学报(工学版);2008年02期
4 张富国;;用户多兴趣下基于信任的协同过滤算法研究[J];小型微型计算机系统;2008年08期
5 侯翠琴;焦李成;张文革;;一种压缩稀疏用户评分矩阵的协同过滤算法[J];西安电子科技大学学报;2009年04期
6 廖新考;;基于用户特征和项目属性的混合协同过滤推荐[J];福建电脑;2010年07期
7 沈磊;周一民;李舟军;;基于心理学模型的协同过滤推荐方法[J];计算机工程;2010年20期
8 徐红;彭黎;郭艾寅;徐云剑;;基于用户多兴趣的协同过滤策略改进研究[J];计算机技术与发展;2011年04期
9 焦晨斌;王世卿;;基于模型填充的混合协同过滤算法[J];微计算机信息;2011年11期
10 郑婕;鲍海琴;;基于协同过滤推荐技术的个性化网络教学平台研究[J];科技风;2012年06期
中国重要会议论文全文数据库 前10条
1 沈杰峰;杜亚军;唐俊;;一种基于项目分类的协同过滤算法[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年
2 周军锋;汤显;郭景峰;;一种优化的协同过滤推荐算法[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年
3 董全德;;基于双信息源的协同过滤算法研究[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年
4 张光卫;康建初;李鹤松;刘常昱;李德毅;;面向场景的协同过滤推荐算法[A];中国系统仿真学会第五次全国会员代表大会暨2006年全国学术年会论文集[C];2006年
5 李建国;姚良超;汤庸;郭欢;;基于认知度的协同过滤推荐算法[A];第26届中国数据库学术会议论文集(B辑)[C];2009年
6 王明文;陶红亮;熊小勇;;双向聚类迭代的协同过滤推荐算法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年
7 胡必云;李舟军;王君;;基于心理测量学的协同过滤相似度方法(英文)[A];NDBC2010第27届中国数据库学术会议论文集(B辑)[C];2010年
8 林丽冰;师瑞峰;周一民;李月雷;;基于双聚类的协同过滤推荐算法[A];2008'中国信息技术与应用学术论坛论文集(一)[C];2008年
9 罗喜军;王韬丞;杜小勇;刘红岩;何军;;基于类别的推荐——一种解决协同推荐中冷启动问题的方法[A];第二十四届中国数据库学术会议论文集(研究报告篇)[C];2007年
10 黄创光;印鉴;汪静;刘玉葆;王甲海;;不确定近邻的协同过滤推荐算法[A];NDBC2010第27届中国数据库学术会议论文集A辑一[C];2010年
中国博士学位论文全文数据库 前10条
1 纪科;融合上下文信息的混合协同过滤推荐算法研究[D];北京交通大学;2016年
2 程殿虎;基于协同过滤的社会网络推荐系统关键技术研究[D];中国海洋大学;2015年
3 李聪;电子商务推荐系统中协同过滤瓶颈问题研究[D];合肥工业大学;2009年
4 郭艳红;推荐系统的协同过滤算法与应用研究[D];大连理工大学;2008年
5 罗恒;基于协同过滤视角的受限玻尔兹曼机研究[D];上海交通大学;2011年
6 薛福亮;电子商务协同过滤推荐质量影响因素及其改进机制研究[D];天津大学;2012年
7 高e,
本文编号:889666
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/889666.html