无机聚合物混凝土基本力学性能及应用研究
本文选题:无机聚合物混凝土 + 应力-应变全曲线 ; 参考:《武汉理工大学》2013年硕士论文
【摘要】:无机聚合物混凝土作为一种新型的建筑材料,由于其原材料丰富、价格低廉、环境污染小、早强快硬等特点,引起了国内外研究学者的关注。本文通过对无机聚合物混凝土进行基本力学性能实验、无机聚合物混凝土梁受弯性能有限元分析、有粘结预应力无机聚合物混凝土梁受弯性能试验和有限元分析,得到的主要研究工作和获得的成果包括以下几个方面: 1、通过试验研究确定了IPC40无机聚合物混凝土的基本力学性能,包括弹性模量、泊松比、应力-应变全曲线,为后文无机聚合物混凝土试件的受力性能及有限元分析提供重要参数。 2、采用ANSYS建立了无机聚合物混凝土梁的有限元分析模型,同时引入粘结滑移本构模型,对无机聚合物混凝土梁的特征荷载值及其判断准则、荷载-挠度曲线、弹簧粘结应力、裂缝形态分布进行了分析,并将数值模拟结果与实验结果进行对比。分析结果表明:基于《混凝土结构设计规范》的带肋钢筋与混凝土粘结滑移本构关系通过相关单元选取及参数设置运用于无机聚合物混凝土梁的计算结果是较为理想的;考虑粘结滑移的模型整体刚度有一定降低,极限荷载比不考虑粘结滑移的值要小,跨中挠度的发展更接近试验结果。 3、通过对三根预应力无机聚合物混凝土梁和一根预应力普通混凝土梁在静力荷载作用下受弯性能的试验研究,结果表明:预应力无机聚合物混凝土梁和预应力普通混凝土梁的受力全过程发展相似,但相对于预应力无机聚合物混凝土梁,预应力普通混凝土梁在各级荷载下所对应的挠度发展更快,同时裂缝的发展也更为迅速。三根预应力无机聚合物混凝土梁的开裂荷载平均值为230kN,大于预应力普通混凝土梁的开裂荷载160kN;极限荷载值较为接近,达到了780kN左右。 4、对于有粘结预应力无机聚合物混凝土梁进行的数值模拟分析结果表明:计算结果包括特征荷载值、挠度的发展趋势、最大变形均比试验结果要小,说明有限元分析对于无机聚合物混凝土材料偏于保守,计算值具有较高的保证率和安全储备。
[Abstract]:As a new type of building material, inorganic polymer concrete has attracted the attention of researchers at home and abroad because of its rich raw materials, low price, small environmental pollution and early strength and fast hardening. In this paper, the basic mechanical properties of inorganic polymer concrete are tested, the bending behavior of inorganic polymer concrete beams is analyzed by finite element method, and the flexural behavior test and finite element analysis of bonded prestressed inorganic polymer concrete beams are carried out. The main research work and results obtained include the following aspects: 1. The basic mechanical properties of IPC40 inorganic polymer concrete, including elastic modulus, Poisson's ratio, are determined by experimental study. The stress-strain curve provides important parameters for the mechanical behavior and finite element analysis of inorganic polymer concrete specimens. 2. The finite element analysis model of inorganic polymer concrete beams is established by ANSYS. At the same time, the bond-slip constitutive model is introduced to analyze the characteristic load value and its judgment criterion, load-deflection curve, spring bond stress and crack shape distribution of inorganic polymer concrete beam. The numerical simulation results are compared with the experimental results. The results show that the bond-slip constitutive relation between ribbed steel bar and concrete based on the Code for Design of concrete structures is ideal for the calculation of inorganic polymer concrete beams through the selection of relevant elements and the setting of parameters. The overall stiffness of the model considering bond-slip is reduced to some extent, and the limit load is smaller than the value without considering bond-slip. The development of mid-span deflection is closer to the experimental results. 3. The flexural behavior of three prestressed inorganic polymer concrete beams and one prestressed ordinary concrete beam under static load is studied. The results show that the whole process of prestressing inorganic polymer concrete beams is similar to that of normal prestressed concrete beams, but it is relatively similar to that of prestressed inorganic polymer concrete beams. The deflection of prestressed concrete beams under various loads develops faster and the cracks develop more rapidly. The average cracking load of three prestressed inorganic polymer concrete beams is 230 KN, which is larger than that of normal prestressed concrete beams, and the ultimate load value is close to that of normal prestressed concrete beams. The numerical simulation results for the bonded prestressed inorganic polymer concrete beams show that the calculated results include the characteristic load values and the development trend of deflection. The maximum deformation is smaller than that of the test results, which indicates that the finite element analysis is conservative for inorganic polymer concrete materials, and the calculated value has a higher guarantee rate and safety reserve.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU528
【参考文献】
相关期刊论文 前10条
1 王作虎;杜修力;詹界东;邓宗才;;预应力FRP筋混凝土梁的非线性有限元分析[J];玻璃钢/复合材料;2010年02期
2 王晴;吴枭;吴昌鹏;;新型节能无机矿物聚合建筑材料研究概况[J];建筑节能;2006年06期
3 赵卫平;肖建庄;;带肋钢筋与混凝土间粘结滑移本构模型[J];工程力学;2011年04期
4 刘哲,胡东,刘志忠;矿渣粉煤灰混凝土[J];公路;1995年02期
5 袁鸿昌,江尧忠;地聚合物材料的发展及其在我国的应用前景[J];硅酸盐通报;1998年02期
6 张景富;丁虹;代奎;孙超;;矿渣-粉煤灰混合材料水化产物、微观结构和性能[J];硅酸盐学报;2007年05期
7 许名鑫;郑文忠;;火灾下预应力混凝土梁板非线性分析[J];哈尔滨工业大学学报;2006年04期
8 王刚,马鸿文,任玉峰,冯武威,丁秋霞;利用粉煤灰制备矿物聚合材料的实验研究[J];化工矿物与加工;2004年05期
9 何蒙;;地质聚合物混凝土综合耐久性试验[J];黑龙江科技信息;2011年10期
10 范飞林;许金余;李为民;杨进勇;翟毅;;矿渣-粉煤灰基地质聚合物混凝土的基本性能研究[J];混凝土;2008年06期
相关博士学位论文 前1条
1 何盛东;机制砂混凝土及其预应力梁受力性能研究[D];郑州大学;2012年
相关硕士学位论文 前1条
1 余天起;预应力CFRP筋混凝土梁延性性能试验研究[D];同济大学;2006年
,本文编号:2046242
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/2046242.html