大型公共建筑能耗监测、模型及管理信息系统研究
发布时间:2018-06-29 12:09
本文选题:大型公共建筑 + 能耗 ; 参考:《西安建筑科技大学》2013年硕士论文
【摘要】:随着我国城市化进程的加快,大型公共建筑在城镇建筑中的比例迅速增加。目前,我国大型公共建筑总量已超过1万座,总面积约5~6亿m2,其所占城镇建筑面积的比例不到4%,但耗电量却占到城镇建筑总耗电量的22%以上,为普通居民住宅的10-20倍,是欧洲、日本等发达国家同类建筑的1.5~2倍,其能耗已占全国总能耗的30%左右,是典型的能耗大户,同时,也是我国建筑节能的重点领域。针对大型公共建筑的节能减排,我国政府及相关职能部门已相继出台了一系列监管导则、规范、标准及方案,要求对其进行能耗监测、能耗统计、能源审计、能效公示,建立能耗监测平台,落实定额用能等节能监管措施。 论文正是基于大型公共建筑的节能监管问题,首先,基于ZigBee和以太网技术构建了大型公共建筑能耗无线监测系统,设计了监测系统中ZigBee能耗无线采集终端节点和ZigBee/以太网网关,并进行了能耗采集节点的软件开发与调试,实现了大型公共建筑能耗的分布式无线计量和远程传输;其次,针对大型公共建筑能耗的大数据特征,根据数据库系统设计的一般步骤,采用SQL Server2008数据库管理软件,建立了大型公共建筑能耗数据库,实现了海量能耗数据存储和管理;然后,归类并分析了大型公共建筑能耗影响因素,根据其能耗影响因素的特征,提出了一种基于小波神经网络的大型公共建筑能耗预测模型,并结合实例,采用Matlab编程,分析了实验结果,验证了此模型在大型公共建筑能耗预测方面的优点;最后,选用VB可视化编程工具,,开发了大型公共建筑能耗监测与管理信息系统,实现了大型公共建筑能耗信息的可视化管理。 论文为我国大型公共建筑的节能监管提供了一种科学化、信息化、透明化的技术平台,利于落实国家关于大型公共建筑各项节能政策及措施,对我国既有大型公共建筑的节能改造与新建大型公共建筑的节能运行都具有科学的指导意义。
[Abstract]:With the acceleration of urbanization in China, the proportion of large public buildings in urban buildings is increasing rapidly. At present, the total number of large public buildings in China has exceeded 10, 000, with a total area of about 5 to 600 million m2, which accounts for less than 4 percent of the total building area of cities and towns, but the electricity consumption accounts for more than 22 percent of the total electricity consumption of urban buildings, 10-20 times as much as that of ordinary residents' houses, and is more than that of Europe. The energy consumption of the similar buildings in Japan and other developed countries accounts for about 30% of the total energy consumption in China. It is a typical large energy consumption household and is also a key area of building energy conservation in China. In view of the energy saving and emission reduction of large public buildings, our government and related functional departments have issued a series of supervision guidelines, norms, standards and schemes one after another, which require energy consumption monitoring, energy consumption statistics, energy audit, energy efficiency publicity. Establish energy consumption monitoring platform and implement energy conservation supervision measures such as quota energy use. Firstly, based on the technology of ZigBee and Ethernet, the wireless monitoring system of energy consumption of large public buildings is constructed, and the wireless acquisition terminal node of ZigBee energy consumption and the ZigBee / Ethernet gateway are designed. The software of energy acquisition node is developed and debugged to realize the distributed wireless measurement and remote transmission of energy consumption of large public buildings. Secondly, aiming at the big data characteristics of energy consumption of large public buildings, According to the general steps of database system design, using SQL Server 2008 database management software, a large-scale public building energy consumption database is established, which realizes the storage and management of massive energy consumption data. This paper classifies and analyzes the factors affecting the energy consumption of large public buildings. According to the characteristics of these factors, a prediction model of energy consumption of large public buildings based on wavelet neural network is proposed. The experimental results verify the advantages of this model in the prediction of energy consumption of large public buildings. Finally, a monitoring and management information system for energy consumption of large public buildings is developed by using VB visual programming tool. The visual management of energy consumption information of large public buildings is realized. This paper provides a scientific, informational and transparent technical platform for the supervision of energy conservation of large public buildings in China, which is conducive to the implementation of various national policies and measures on energy conservation of large public buildings. It has scientific guiding significance for the energy saving reconstruction of existing large public buildings and the energy saving operation of new large public buildings.
【学位授予单位】:西安建筑科技大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU242;TU111.3
【参考文献】
相关期刊论文 前10条
1 孙建平;朱雯;;基于小波BP-时间序列的齿轮箱温度预警[J];电子测量与仪器学报;2012年03期
2 王磊;于军琪;马媛;杨创业;;大型公共建筑能耗无线远程监测与节能管理系统研究[J];建筑节能;2011年03期
3 吴亦锋;刘彪;许巧玲;;大型公共建筑能耗监控系统研究[J];福州大学学报(自然科学版);2011年01期
4 杨孝鹏;;国内外建筑能耗监测平台建设调查与研究[J];工程与建设;2011年01期
5 李国良;李忠富;谢洪涛;李红波;;基于IGA-BP算法的小波神经网络模型及应用[J];系统工程;2012年10期
6 ;推合同能源管理 促公共建筑节能[J];城市住宅;2012年04期
7 任云晖,赵利民;能源计量系统的分析与实现[J];计量技术;2004年12期
8 马媛;于军琪;杨柳;杨创业;王磊;;大型公共建筑能耗动态模型的研究与应用[J];计算机工程与应用;2011年16期
9 路宏伟;;大型公共建筑能耗监测与信息管理系统研究及应用[J];江苏建筑;2011年05期
10 郭湘勇;刘宏立;周平;江艳;梁来朋;;基于ZigBee技术的建筑能耗监测系统设计[J];计算机测量与控制;2011年03期
本文编号:2082067
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/2082067.html