信息不完备条件下的单幅图像重构算法研究
发布时间:2021-01-09 20:44
现如今,社会步入高度发达的信息交互时代,图像已成为人们传递信息的重要载体,信息交互的需求激发了人们对图像质量的追求。然而,在获取或处理图像信息的过程中,往往会受到诸如成像器件质量、采集环境以及设备传输与存储性能等众多条件的限制。上述原因通常会导致图像质量发生一定程度上的退化,最终获得低质量的图像。近年来学者们针对以上存在的问题,对如何获取高质量图像的方法进行了研究,并取得了不错的成果。本论文的研究主题是针对信息不完备条件下的单幅图像重建,本文的主要工作和结论如下:1.针对加性噪声,提出了一种用控制系统模型实现图像去噪的新方法。主要对模型进行了两个方面的改进:(1)由于图像在采样过程中可能会发生数据丢失的情况,这会对去噪图像产生严重影响,因此本文采用多包传输的方式对图像进行分块拆分,用于系统采样。同时,引入交织技术,将错误信息由局部分散到图像全局,以此来降低数据丢失对图像的质量影响;(2)针对图像信息不完备条件下恢复图像纹理信息的问题,构建了一种新的滤波器,通过对噪声点周围8个方向的边缘进行合理预测,实现对图像的去噪操作。实验结果表明,从峰值信噪比和结构相似度等定量比较结果来看,本文的模...
【文章来源】:重庆邮电大学重庆市
【文章页数】:69 页
【学位级别】:硕士
【部分图文】:
图不同窗口大小均值滤波去噪效果图(c)5×5窗口去噪(d)7×7窗口去噪
重庆邮电大学硕士学位论文第2章图像重构和数据丢失的相关基础知识9图2.3小波去噪结构框图2.1.3块匹配图像去噪模型数字图像中的像素点并不是单一存在,局部区域中的像素点不仅与该区域的像素点有关,还与邻近区域的其他像素点有着密切的关联。单一的考虑局部像素点间的关系并不能有效的获取非局部特征的自相似性。为了解决这个问题,该模型通过图像非局部块间的自相似性,全局搜索与目标块相似的匹配块,然后对相似部分进行滤波。相比于处理区域块中单独的像素信息,该算法考虑了图像全局的结构相似性,进一步提升了去噪算法的准确度。非局部均值算法如下,其中定义()为原始图像的像素信息,()为含噪声图像的像素信息。[′]()=∑(,)[](2.4)其中,为受到噪声污染的图像,′为去噪之后的图像,(,)表示为像素点i与j之间的相似性权重,该相似性权重计算方法如下,样本匹配权重表示如图2.4中所示,依据分别以i为中心的样本块和以j为中心的样本块之间的欧氏距离确定权重值。(,)=1()exp[‖0()0()‖222],(,)∈(0,1)(2.5)()=∑exp[‖0()0()‖222](2.6)如公式(2.5)中所示,()表示为归一化因子,定义在公式(2.6)展示,控制高斯函数的衰减程度的平滑参数数值越大,即可更好控制平缓的高斯函数变化,用表示。
重庆邮电大学硕士学位论文第2章图像重构和数据丢失的相关基础知识10图2.4样本匹配权重表示图2.2图像的插值模型随着对图像插值的研究深入,图像插值技术不断提升而广泛应用于多个领域,这些插值算法大体上可以分为线性插值算法和非线性插值算法两大类,我们在图2.5中给出了图像插值的分类情况。图2.5图像插值算法分类
【参考文献】:
期刊论文
[1]面向三维高效视频编码的深度图错误隐藏[J]. 周洋,吴佳忆,陆宇,殷海兵. 电子与信息学报. 2019(11)
[2]基于马尔科夫网络的文本图像超分辨率重建[J]. 李瑞明,张烨. 山西电子技术. 2017(04)
[3]基于梯度矢量卷积场的四阶各向异性扩散及图像去噪[J]. 任文琦,王元全. 光学精密工程. 2013(10)
本文编号:2967367
【文章来源】:重庆邮电大学重庆市
【文章页数】:69 页
【学位级别】:硕士
【部分图文】:
图不同窗口大小均值滤波去噪效果图(c)5×5窗口去噪(d)7×7窗口去噪
重庆邮电大学硕士学位论文第2章图像重构和数据丢失的相关基础知识9图2.3小波去噪结构框图2.1.3块匹配图像去噪模型数字图像中的像素点并不是单一存在,局部区域中的像素点不仅与该区域的像素点有关,还与邻近区域的其他像素点有着密切的关联。单一的考虑局部像素点间的关系并不能有效的获取非局部特征的自相似性。为了解决这个问题,该模型通过图像非局部块间的自相似性,全局搜索与目标块相似的匹配块,然后对相似部分进行滤波。相比于处理区域块中单独的像素信息,该算法考虑了图像全局的结构相似性,进一步提升了去噪算法的准确度。非局部均值算法如下,其中定义()为原始图像的像素信息,()为含噪声图像的像素信息。[′]()=∑(,)[](2.4)其中,为受到噪声污染的图像,′为去噪之后的图像,(,)表示为像素点i与j之间的相似性权重,该相似性权重计算方法如下,样本匹配权重表示如图2.4中所示,依据分别以i为中心的样本块和以j为中心的样本块之间的欧氏距离确定权重值。(,)=1()exp[‖0()0()‖222],(,)∈(0,1)(2.5)()=∑exp[‖0()0()‖222](2.6)如公式(2.5)中所示,()表示为归一化因子,定义在公式(2.6)展示,控制高斯函数的衰减程度的平滑参数数值越大,即可更好控制平缓的高斯函数变化,用表示。
重庆邮电大学硕士学位论文第2章图像重构和数据丢失的相关基础知识10图2.4样本匹配权重表示图2.2图像的插值模型随着对图像插值的研究深入,图像插值技术不断提升而广泛应用于多个领域,这些插值算法大体上可以分为线性插值算法和非线性插值算法两大类,我们在图2.5中给出了图像插值的分类情况。图2.5图像插值算法分类
【参考文献】:
期刊论文
[1]面向三维高效视频编码的深度图错误隐藏[J]. 周洋,吴佳忆,陆宇,殷海兵. 电子与信息学报. 2019(11)
[2]基于马尔科夫网络的文本图像超分辨率重建[J]. 李瑞明,张烨. 山西电子技术. 2017(04)
[3]基于梯度矢量卷积场的四阶各向异性扩散及图像去噪[J]. 任文琦,王元全. 光学精密工程. 2013(10)
本文编号:2967367
本文链接:https://www.wllwen.com/kejilunwen/shengwushengchang/2967367.html
最近更新
教材专著