基于RealSense的自动换盘移栽秧苗检测研究

发布时间:2024-06-11 01:28
  移栽是蔬菜和花卉生产过程中最重要的环节之一,为了满足穴盘苗的生长空间和养分需求,需将其从高密度穴盘中移栽到低密度穴盘。由于人工幼苗分选的效率较低和劳动强度较高,目前难以扩大生产规模。因此,分选出健康幼苗是实现高质量移栽的前提和基础。另外,植物损伤信息检测是穴盘苗自动移栽的重要问题。基于图像处理的检测技术具有速度快、效率高、精准可靠的优点,视觉检测对提高效率、减轻劳动强度、保证移栽速度、促进苗木快速发展具有重要意义。近年来,已经提出了几种基于图像的检测方法,并且可能将其开发用于农业生产。然而,现有的基于深度信息的识别技术主要是通过深度点云的3D重建,图像特征提取或RBG信息的融合来实现幼苗的识别,复杂程度高并且对健康幼苗的识别非常有限。针对上述缺点,本文提出了利用RealSense深度传感器开发了基于深度信息的健康温室穴盘苗的识别方法。主要研究内容如下:1、根据移栽要求,研究了黄瓜幼苗形态特征参数与苗木之间指标的相关性和灰色关联度分析,确定了黄瓜苗叶面积,茎直径和株高的阈值。结论:当黄瓜幼苗的叶面积,茎直径和株高分别大于257mm 2、1mm和27mm时,即可进行移...

【文章页数】:88 页

【学位级别】:硕士

【文章目录】:
ACKNOWLEDGEMENT
DEDICATION
ABSTRACT
摘要
ABBREVIATION
CHAPTER 1 INTRODUCTION
    1.1 Global perspective, and Research background
    1.2 Research status of monitoring of seedling in automatic transplanting
        1.2.1 Research status of seedlings transplanter based on MV in abroad
        1.2.2 Research status of seedling transplanter based on MV in P.R. China
    1.3 Research status of MV technology for seedlings recognition at home andabroad
        1.3.1 Research status of MV technology for seedlings recognition used inautomatic transplanting
        1.3.2 Research status of MV technology for seedlings recognition based onimages
    1.4 Research status of MV technology for recognition of fruits, vegetables andplants based on depth vision
        1.4.1 Time-of-flight (ToF) Camera
        1.4.2 Laser Range Finder
        1.4.3 RGB-D Camera
    1.5 Problem statements
    1.6 Research objectives
    1.7 Outline of the dissertation
CHAPTER 2 Correlation analysis of morphological characteristics parameters of cucumberseedlings based on the seedling index
    2.1 Introduction
    2.2 Correlation analysis between the seedling index and morphologicalcharacteristics parameters of cucumber Seedlings
        2.2.1 Experimental setup and seedlings growth
        2.2.2 Measurement of plant morphological characteristics parameters
        2.2.3 Statistical analysis
        2.2.4 Results
            2.2.4.1 Correlation analysis between the seedling index and morphological characteristics parameters of cucumberseedlings
            2.2.4.2 Grey correlation analysis between the seedling index and morphological characteristics parameters of cucumberseedlings
    2.3 Determination of image recognition characteristics of Cucumber seedling
        2.3.1 Determination of image recognition characteristics of Cucumberseedling
        2.3.2 Determination of threshold values for the image recognition ofcucumber seedlings
CHAPTER 3 Seedling-lump integrated monitoring and morphological characteristicsextraction with Real Sense sensor
    3.1 Introduction
    3.2 Materials and Methods
        3.2.1 Materials
            3.2.1.1 Selection of image acquisition equipment
                3.2.1.1.1 Realsense technology introduction
                3.2.1.1.2 Realsense 3D camera parameter comparison
        3.2.2 Methods
            3.2.2.1 Monitoring strategy and overview of the proposedalgorithm
            3.2.2.2 Calibration of the Real Sense sensor
        3.2.3 Close-shot monitoring of seedling with Real Sense sensors
        3.2.4 Image acquisition with intel Real Sense Sensor
            3.2.4.1 RGB image acquisition
            3.2.4.2 Depth image acquisition
        3.2.5 Elimination of background and segmentation
        3.2.6 Plant morphological features extraction with an MV system
            3.2.6.1 Stem diameter
            3.2.6.2 Plant height
            3.2.6.3 Leaf area
            3.2.6.4 Perimeter
        3.2.7 Monitoring of seedling in multi-views
        3.2.8 Monitoring of seedling in different light conditions
    3.3 Experiment to validate the Real Sense sensor
    3.4 Data analysis
    3.5 Results and discussions
        3.5.1 Monitoring morphological characteristics of the seedlings
        3.5.2 Multi-views performances of seedling height
        3.5.3 Seedlings monitoring in different light conditions
        3.5.4 Validation of the sensor
        3.5.5 Impact of multi-views-based comparison
        3.5.6 Influence of light condition
        3.5.7 Reliability of Real Sense sensor for monitoring
        3.5.8 Close-shot monitoring of seedling
CHAPTER 4 Test and analysis of healthy seedlings recognition using functional automatictransplanting Machine system
    4.1 Introduction
    4.2 Brief introduction of full-automatic integrated transplantingmachine system
        4.2.1 Structure composition of transplanting machine system
        4.2.2 Working principle of transplanting machine system
    4.3 Design of image recognition scheme for healthy seedlings based onReal Sense camera
        4.3.1 Seedlings recognition strategy on transplanting machine system
    4.4 Feasibility verification test of healthy seedlings recognition scheme
        4.4.1 Test materials and methods
            4.4.1.1 Test materials
            4.4.1.2 Test methods
        4.4.2 Results and analysis
CHAPTER 5 Conclusion and future prospects
    5.1 Conclusion
    5.2 Existing problems and future prospects
Publication



本文编号:3992195

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shengwushengchang/3992195.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户54679***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com