当前位置:主页 > 科技论文 > 石油论文 >

常压下含THF水合物沉积物热物性测量

发布时间:2018-04-26 13:18

  本文选题:瞬变平面热源法 + THF水合物 ; 参考:《山东科技大学》2017年硕士论文


【摘要】:近年来,伴随着能源危机的加重,使得天然气水合物的开发和利用成为了水合物界研究的重点。天然气水合物作为一种清洁的潜在能源,实现商业化开采,一定会对未来的能源结构产生巨大的影响。我国学者通过不断地探索和研究,已经证实我国的天然气水合物资源储量十分丰富,开发利用其资源对我国的可持续发展战略至关重要。水合物储层对温度的变化非常敏感,开采过程中很容易造成海底滑坡等地质灾害,因此掌握天然气水合物的基本热物性参数具有重要的意义。为了研究水合物以及含水合物沉积物的热物性,实验设计了一套小装置以完成实验目标;实验以THF水合物作为研究对象,通过瞬变平面热源法测量了干燥石英砂、饱含水的石英砂、饱含冰的不同粒径的石英砂、饱含THF水合物的不同粒径的石英砂、饱含冰或者THF水合物的天然海沙等体系的热物性,主要研究样品的制备方法、热物性测量方法以及含水合物沉积物的热物性质。通过实验研究,得出结论:压力或者水合物生成后压缩与否对THF水合物的导热系数值、热扩散系数值和比热容值的影响不大,并且THF水合物的比热容值接近于冰的比热容。常压下生成的THF水合物的导热系数在温度为250.15~268.15K间时随温度的升高而升高,并且符合线性规律;在温度为268.15~277.55K之间时,其导热系数值虽然仍然是随温度升高而升高,但是并不符合线性规律。石英砂的粒径越小,含冰的石英砂的导热系数、热扩散系数和比热容越大,导热系数和热扩散系数值随温度的升高而下降,比热容随温度的升高而升高。石英砂的粒径越小,含THF水合物的石英砂的导热系数越大,其导热系数的温度依赖性与石英砂的粒径和多孔介质的孔隙度有很大的关系,热扩散系数随温度升高而降低,比热容随温度升高而升高。含THF水合物天然海沙的导热系数和比热容表现出随温度升高而升高的玻璃体特征,热扩散系数随温度的升高而降低。
[Abstract]:In recent years, with the aggravation of energy crisis, the development and utilization of natural gas hydrate has become the focus of hydrate research. As a kind of clean potential energy, gas hydrate will have a great impact on the energy structure in the future. Through continuous exploration and research, Chinese scholars have proved that the natural gas hydrate reserves are very rich in China, and the development and utilization of natural gas hydrate resources is of great importance to the sustainable development strategy of our country. The hydrate reservoir is very sensitive to the change of temperature, and it is easy to cause geological disasters such as submarine landslide during exploitation. Therefore, it is of great significance to master the basic thermal physical parameters of natural gas hydrate. In order to study the thermal properties of hydrates and sediments containing hydrates, a small device was designed to accomplish the experimental goal, and the dry quartz sand was measured by transient plane heat source method with THF hydrate as the research object. The thermal properties of quartz sand full of water, quartz sand with different sizes of ice, quartz sand with different particle sizes of THF hydrate, natural sea sand full of ice or THF hydrate, etc., were studied in this paper. Methods of measuring thermal properties and thermal properties of hydrate-containing sediments. Through experimental study, it is concluded that pressure or compression after hydrate formation has little effect on the thermal conductivity, thermal diffusion coefficient and specific heat capacity of THF hydrate, and the specific heat capacity of THF hydrate is close to that of Yu Bing. The thermal conductivity of the THF hydrate formed at atmospheric pressure increases with the increase of temperature at 250.15268.15K, and the thermal conductivity increases with the increase of temperature when the temperature is between 268.15K and 277.55K. But it does not conform to the linear law. The smaller the grain size of quartz sand, the greater the thermal conductivity, thermal diffusion coefficient and specific heat capacity of the quartz sand containing ice. The thermal conductivity and thermal diffusion coefficient value decrease with the increase of temperature, and the specific heat capacity increases with the increase of temperature. The smaller the particle size of quartz sand, the greater the thermal conductivity of quartz sand containing THF hydrate. The temperature dependence of thermal conductivity is related to the particle size of quartz sand and the porosity of porous media, and the thermal diffusion coefficient decreases with the increase of temperature. The specific heat capacity increases with the increase of temperature. The thermal conductivity and specific heat capacity of natural marine sand containing THF hydrate show the characteristics of vitreous body with the increase of temperature, and the thermal diffusion coefficient decreases with the increase of temperature.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P618.13

【参考文献】

相关期刊论文 前10条

1 张勇;刘昌岭;孙始财;陈强;赵洁;彭霞;;含THF水合物石英砂热物性测定[J];天然气化工(C1化学与化工);2016年05期

2 万丽华;梁德青;李栋梁;关进安;;二氧化碳水合物导热和热扩散特性[J];化工学报;2016年10期

3 姚贵策;苑昆鹏;吴硕;王照亮;;独立探头3ω法表征甲烷水合物热导率和热扩散率[J];化工学报;2016年05期

4 李栋梁;梁德青;;水合物导热系数和热扩散率实验研究[J];新能源进展;2015年06期

5 丛晓荣;吴能友;苏明;杨睿;乔少华;毛小平;;天然气水合物资源量估算研究进展及展望[J];新能源进展;2014年06期

6 唐翠萍;梁德青;;显微镜下THF水合物结晶过程实验研究[J];工程热物理学报;2013年08期

7 唐翠萍;梁德青;;含低剂量抑制剂的四氢呋喃水合物生成过程[J];石油化工;2012年10期

8 孟庆国;刘昌岭;业渝光;;核磁共振成像原位监测冰融化及四氢呋喃水合物分解的微观过程[J];应用基础与工程科学学报;2012年01期

9 刘瑜;宋永臣;李清平;;四氢呋喃水合物形成及饱和度的MRI检测[J];波谱学杂志;2010年04期

10 李小森;陈琦;李刚;陈朝阳;张郁;刘怡君;;海底水合物矿藏降压开采与甲烷气体扩散过程的数值模拟[J];现代地质;2010年03期

相关硕士学位论文 前2条

1 李斯佳;抑制剂存在下四氢呋喃水合物的粘附作用及生长研究[D];华南理工大学;2013年

2 毕丹丹;水合物抑制、防聚显微操作系统及THF、TBAB水合物生长和粘附力研究[D];华南理工大学;2010年



本文编号:1806184

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1806184.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户855f4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com