节流管汇节流压力控制实物仿真设计与实现
[Abstract]:In the process of exploration and development of petroleum resources, once the pressure balance at the bottom of the well is not properly controlled, it may lead to serious accidents such as well invasion, overflow, blowout and so on. As a result, oil and gas wells are abandoned, and a series of environmental pollution problems are caused, even major well control accidents will threaten the safety of well control workers and the lives and property of the people around oil and gas wells. Therefore, it is necessary to continuously improve the level of well control technology of field production well control workers. Nowadays, the physical simulation technology is widely used in the field of industry. In this paper, the physical simulation technology is applied to the actual drilling well control training and a well control physical simulation training system is designed, which is compared with the virtual simulation training. The physical simulation training system can improve the simulation degree of the training students' well control production environment, and then achieve a more efficient well control training effect to ensure that the trainees can safely and reliably carry out well control operations in oil and gas wells production. The main contents of this paper are as follows: first, on the basis of deeply understanding the training process of throttling pressure regulation, the composition and working principle of throttling manifold, Based on the principle of physical simulation technology, the detailed design of the physical simulation flow of throttling pressure control in throttling tube is completed, and the revamping of related hardware equipment in throttling pressure control simulation is completed. On the basis of understanding the mathematical model of throttling element and the structure of throttling pressure control system, the mathematical model of throttling pressure control system is constructed. Secondly, according to the principle of physical simulation of throttling pressure control in throttling tube, on the basis of in-depth study of PID closed-loop control system, combined with fuzzy control and neural network theory, This paper presents a fuzzy adaptive control algorithm for throttling pressure control simulation training, and applies it to the physical simulation training system of throttling pressure control. The simulation results show that the fuzzy adaptive control algorithm can effectively improve the control effect of the system and realize the accurate control of throttle valve opening in the process of throttling pressure control operation. Furthermore, the logarithmic change of simulated pressure instrument is controlled accurately, and the training environment of well control is built up for the trainee. Thirdly, according to the actual requirements of well control training and the existing well control operation specifications, the design and implementation of the physical simulation training system for throttling pressure control is completed on the basis of the fuzzy adaptive control algorithm of throttling pressure. A physical simulation training system for throttling pressure control is established on the platform of Zijin Bridge configuration monitoring software, which realizes automatic well control training, replaces the traditional manual teaching well control training mode, and provides a new type of well control training. Efficient training method, thus shortens the staff training cycle, enhances the training efficiency. To sum up, this paper completes the design and realization of the physical simulation of throttling pressure control, and puts it into the actual drilling well control training to verify its feasibility. The simulation results show that the physical simulation training system improves the efficiency of well control training and achieves better training effect, thus reducing the probability of well control accidents in actual production process and ensuring safe and reliable well control production.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.9;TE28
【参考文献】
相关期刊论文 前10条
1 张方舟;李龙;王雪珊;;节流管汇节流压力控制模糊自适应回馈仿真[J];计算机技术与发展;2017年03期
2 殷伟伟;殷舜时;未莉莉;丁靓;;针型节流阀内部液固两相运动及壁面磨损研究[J];石油机械;2016年06期
3 付玉坤;王娟;张克亮;;油气田钻井节流管汇系统的技术发展[J];石油和化工设备;2015年06期
4 孙洪伟;于兰;;模糊控制系统研究及应用浅析[J];黑龙江科技信息;2014年30期
5 黄怡;;运用智能化仪表进行智能化控制[J];电子世界;2014年18期
6 王洪利;丁涛;苏洪军;丰乃宽;刘志铁;;浅谈修井作业井控工作的重要性[J];中国石油和化工标准与质量;2014年08期
7 杨宇哲;;浅谈仿真技术在机械设计制造过程中的应用[J];科技创新与应用;2014年11期
8 刘璞;杨先伦;;综合压力控制法在常规压井中的应用[J];中国石油和化工标准与质量;2014年02期
9 贾林;艾志久;王彪;邓莉;胡文礼;;节流阀阀芯振动失效分析及结构改进[J];石油矿场机械;2013年04期
10 张奎林;夏柏如;;微流量控制钻井自动节流管汇的设计及应用[J];石油钻采工艺;2012年06期
相关博士学位论文 前1条
1 林碧华;神经模糊系统研究及其在电厂协调系统中的应用[D];华北电力大学(河北);2005年
相关硕士学位论文 前10条
1 孙瑞雪;闸板防喷器开关井控制算法研究与仿真设计[D];东北石油大学;2016年
2 张文晶;井控远程台压力油制备实物仿真模型的设计及实现[D];东北石油大学;2016年
3 徐小凯;油水井射流喷砂切割造缝增产增注技术[D];西安石油大学;2014年
4 王明;基于自适应模糊神经网络模型的边坡形变预测应用研究[D];长安大学;2014年
5 谭伟;硬件在环仿真技术研究及其在风力发电中的应用[D];青岛科技大学;2014年
6 王毅;基于多智能体的工业监控人机交互系统[D];北京化工大学;2013年
7 陈尚周;动态环空压力控制系统研究与仿真[D];中国石油大学;2011年
8 邓洪涛;基于HLA 某导弹系统半实物实时视景仿真研究[D];上海交通大学;2011年
9 沈小翠;基于关联模型的钻井卡钻事故仿真与预测控制方法研究[D];中国石油大学;2009年
10 姚晓春;V形调节球阀的数值模拟及结构优化[D];兰州理工大学;2009年
,本文编号:2382808
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2382808.html