基于贝叶斯滤波和RSSI测距的堤坝出险定位算法研究
本文关键词: 无线传感器网络 RSSI 堤坝出险定位 贝叶斯滤波 出处:《华东交通大学》2014年硕士论文 论文类型:学位论文
【摘要】:自建国以来,我国共建成大中小型堤坝超过九万座,堤坝会随着使用时间的延长而出现不同的安全隐患,需要对堤坝进行长期、有效的安全监测以实现维护。堤坝所处的环境决定了监测环境的恶劣,随着传感器技术、无线通信技术和嵌入式技术的发展,利用无线传感器网络技术对堤坝进行监测成为研究的热点,其中对堤坝出险位置及时准确的定位是研究的核心内容之一。 无线传感器网络灵活、低功耗以及经济的优点导致其缺点同样明显,节点的能源、计算能力以及存储能力制约了定位的精确程度,堤坝安全监测的环境相对比较复杂,要充分考虑到环境噪声和人为因素的干扰。 本文通过对每种测量方法的适用范围和优缺点进行研究和比较,选用RSSI作为定位的测距方法,,为了保障信号强度采样的准确,提出了应用贝叶斯统计原理进行滤波以提高定位的准确性,以满足在不增加额外的硬件开销的同时满足测量精度的要求。在现有研究成果的基础上,进行基于贝叶斯滤波和RSSI测距的堤坝出险定位算法研究,主要分析影响定位精度的两个主要因素:测距误差和计算误差,其主要研究成果如下: 1.测距误差方面:分析在堤坝安全监测出险定位中影响RSSI测距准确性的因素并建立无线信道传输损耗模型。由于RSSI采样具有随机性等特性,需要对RSSI采样进行高斯滤波以提高采样准确度,以降低测距误差; 2.计算误差方面:分析三角形质心算法以及加权三角质心算法等定位算法对计算误差的影响,提出运用贝叶斯统计原理进行滤波以提高准确度的方法,以降低计算误差。
[Abstract]:Since the founding of the people's Republic of China, more than 90,000 large and medium-sized dikes have been built in our country. With the extension of the working time, there will be different hidden dangers to the safety of the dikes, which need to be carried out for a long time. Effective security monitoring to achieve maintenance. The environment of the dam determines the poor monitoring environment, with the development of sensor technology, wireless communication technology and embedded technology. Using wireless sensor network (WSN) technology to monitor the dike has become a hot topic, among which the timely and accurate location of the levee risk location is one of the core contents of the research. The advantages of flexibility, low power consumption and economy in wireless sensor networks lead to the obvious disadvantages. The energy, computing power and storage capacity of nodes restrict the accuracy of location. The environment of dam safety monitoring is relatively complex, so environmental noise and human disturbance should be fully taken into account. Through the study and comparison of the scope of application, advantages and disadvantages of each measurement method, RSSI is chosen as the location method to ensure the accuracy of signal intensity sampling. In order to satisfy the requirement of measurement accuracy without additional hardware overhead, the Bayesian statistical principle is proposed to improve the accuracy of location. On the basis of the existing research results. Based on Bayesian filtering and RSSI distance finding, the paper mainly analyzes the two main factors that affect the location accuracy: ranging error and calculation error. The main research results are as follows: 1. Ranging error: analyze the factors that affect the accuracy of RSSI ranging in the safety monitoring of dike and dam, and establish the wireless channel transmission loss model. Because of the randomness of RSSI sampling, etc. Gao Si filter is needed for RSSI sampling to improve sampling accuracy and reduce ranging error. 2. Calculation error: the influence of triangle centroid algorithm and weighted triangular centroid algorithm on calculation error is analyzed, and the method of using Bayesian statistical principle to filter to improve accuracy is put forward. To reduce the calculation error.
【学位授予单位】:华东交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TV698.1
【参考文献】
相关期刊论文 前10条
1 黄中林;邓平;梁甲金;陈红阳;;无线传感器网络定位技术研究进展[J];传感器与微系统;2009年11期
2 赵志仁;徐锐;;国内外大坝安全监测技术发展现状与展望[J];水电自动化与大坝监测;2010年05期
3 曲从善;许化龙;谭营;;非线性贝叶斯滤波算法综述[J];电光与控制;2008年08期
4 彭桂芳,陈洪;贝叶斯学派丰富和发展了古典统计学[J];东莞理工学院学报;1994年02期
5 黄毅;胡爱群;;无线传感器网络定位算法综述[J];电信科学;2010年07期
6 王军,周伟达;贝叶斯网络的研究与进展[J];电子科技;1999年15期
7 汤文亮;陈松;周金栋;黄智水;;基于EDV-Hop的免测距定位算法研究[J];华东交通大学学报;2012年03期
8 周建方;张迅炜;唐椿炎;;基于贝叶斯网络的沙河集水库大坝风险分析[J];河海大学学报(自然科学版);2012年03期
9 汪国有,邹玉兰;基于贝叶斯数据融合的多尺度目标识别[J];华中科技大学学报(自然科学版);2003年11期
10 熊小华;何通能;徐中胜;王槊华;王晓枫;;无线传感器网络节点定位算法的研究综述[J];机电工程;2009年02期
相关博士学位论文 前2条
1 王洁;基于贝叶斯估计方法的无线定位跟踪技术研究[D];大连理工大学;2011年
2 陈宇波;带有先验信息的动态定位贝叶斯滤波算法研究[D];中南大学;2010年
本文编号:1489582
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/1489582.html