当前位置:主页 > 科技论文 > 水利工程论文 >

粉煤灰改性分散性土的工程特性及其机制研究

发布时间:2018-04-11 09:22

  本文选题:分散性土 + 粉煤灰 ; 参考:《西北农林科技大学》2017年硕士论文


【摘要】:分散性土是近年来岩土工程领域较为关注的特殊土类之一,其具有抗冲蚀能力低、破坏过程迅速、隐蔽的特点,对处于分散性土地区的水利工程等产生极大的危害。粉煤灰作为燃煤火电厂的次生产物,本身具有一定的活性和黏聚力,并且具有压缩性小、强度高、水稳性强等工程特点,因此可作为土体的改性材料。本文基于黏性土体的分散机理,采用针孔试验、碎块试验、压缩试验、无侧限抗压强度试验、自身抗渗试验、扫描电镜试验以及压汞试验等方法,研究了粉煤灰对分散性土的分散性、压缩性、强度特性、抗渗性能以及微观结构的影响,并对粉煤灰改性分散性土的机制进行了分析。研究结论如下。(1)粉煤灰对分散性土的分散性具有良好的改性效果,影响因素主要包括粉煤灰剂量、养护龄期和压实度。随着粉煤灰剂量的增加,养护龄期的延长,压实度的提高,分散性土逐渐丧失分散性,先呈现过渡性土的特征,进而转变为非分散性土。建议在实际工程中,粉煤灰剂量大于4%,养护7d以上,压实度控制在96%以上。(2)粉煤灰可有效降低土体的压缩变形,提高土体的强度及抗渗性能。在同一养护龄期下,随着粉煤灰剂量和养护龄期的增加,土体的压缩性均逐渐降低,无侧限抗压强度逐渐增大。养护7d后,土体的压缩性基本处于一种稳定状态。养护初期,粉煤灰剂量对土体的无侧限抗压强度几乎没有影响。在分散性土中掺入粉煤灰后,土体的渗透破坏坡降逐渐增大,土体的抗渗性能显著增强,可提高土体的渗透稳定性。(3)粉煤灰改性分散性土的主要机制包括水解水化反应、离子交换反应、硬凝反应等,通过这些反应,土体的压缩性明显降低,无侧限抗压强度以及抗渗性能显著提高。扫描电镜结果表明,粉煤灰与分散性土反应生成的水化产物逐渐增多,使得骨架颗粒之间的接触面积增大,骨架颗粒之间的接触方式由点接触转变为面接触,土体的密实性增加。压汞试验结果表明,颗粒之间的孔隙逐渐减小,直径在1~10μm的孔隙数量减小,0.1~1μm的孔隙数量增加。
[Abstract]:Dispersive soil is one of the special soils in geotechnical engineering field in recent years. It has the characteristics of low erosion resistance, rapid failure process and concealment, which has great harm to water conservancy projects in dispersed land areas.Fly ash, as the secondary product of coal-fired power plant, has certain activity and cohesion, and has the engineering characteristics of low compressibility, high strength and strong water stability, so it can be used as the modified material of soil.In this paper, based on the dispersion mechanism of clay soil, the methods of pinhole test, fragment test, compression test, unconfined compressive strength test, self impermeability test, scanning electron microscope test and mercury injection test are used.The influence of fly ash on dispersity, compressibility, strength, impermeability and microstructure of disperse soil was studied, and the mechanism of fly ash modified dispersible soil was analyzed.The results are as follows: (1) fly ash has a good effect on the dispersity of dispersible soil, and the influencing factors mainly include the dosage of fly ash, curing age and compaction.With the increase of the dosage of fly ash, the prolongation of curing age, the increase of compaction degree, the dispersive soil gradually loses its dispersity, and it first presents the characteristics of transitional soil and then changes into non-dispersive soil.It is suggested that in practical engineering, the dosage of fly ash is more than 4, the curing time is more than 7 days, and the compaction degree is more than 96%.) fly ash can effectively reduce the compression deformation of soil and improve the strength and impermeability of soil.Under the same curing age, with the increase of fly ash dosage and curing age, the compressibility of soil gradually decreases, and the unconfined compressive strength increases gradually.After 7 days of curing, the compressibility of soil is basically in a stable state.At the early stage of curing, the dosage of fly ash has little effect on the unconfined compressive strength of soil.After the addition of fly ash into dispersible soil, the slope of soil seepage failure gradually increases, and the impermeability of soil increases significantly, which can improve the permeability stability of soil. The main mechanism of fly ash modified dispersible soil includes hydrolysis and hydration reaction.Through these reactions, the compressibility of soil is obviously reduced, and the unconfined compressive strength and impermeability are improved significantly.The SEM results show that the hydration products produced by the reaction of fly ash with dispersible soil increase gradually, which makes the contact area between skeleton particles increase, and the contact mode between skeleton particles changes from point contact to surface contact.The compactness of soil is increased.The results of mercury injection test show that the porosity between particles decreases gradually, and the number of pores with diameter of 1 ~ 10 渭 m decreases by 0.1 渭 m.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TV223

【相似文献】

相关期刊论文 前10条

1 甘霖;;某水电工程黏土分散性试验方法的特点及综合分析[J];四川水力发电;2010年05期

2 戴春胜;龙显助;柯荣;刘文良;;松嫩平原分散性土壤对工程的危害与治理措施研究[J];科技创新与应用;2013年34期

3 郭君;;大庆地区安肇新河分散性土性质初探[J];工程勘察;1993年05期

4 马秀媛,徐又建,薛佩华;粘土分散性研究[J];山东水利;2000年09期

5 樊恒辉,高明霞,李鹏,吴普特;某大坝心墙土料分散性试验研究[J];岩土工程学报;2003年05期

6 巨娟丽;严宝文;樊恒辉;刘俊民;;某大坝防渗土料分散性试验研究[J];人民长江;2007年06期

7 巨娟丽;刘俊民;严宝文;;宁木特水电站大坝防渗土料分散性试验研究[J];路基工程;2008年02期

8 刘越;许明显;周志星;;分散性土对水利工程的危害及防治[J];山西建筑;2009年03期

9 陈式华;何耀辉;;山东青水库大坝填土分散性试验研究[J];浙江水利科技;2009年01期

10 席福来;潘晓刚;;新疆某工程土料分散性探讨[J];长江科学院院报;2009年08期

相关会议论文 前3条

1 樊恒辉;李振;周俊;;土料分散性判别试验研究[A];第二届全国岩土与工程学术大会论文集(下册)[C];2006年

2 樊恒辉;李鹏;贾莉;张松;;西郊、三坪两水库大坝心墙土料分散性试验研究[A];土石坝与岩土力学技术研讨会论文集[C];2001年

3 邓铭江;周小兵;万金平;罗伟林;董安建;;新疆某水利枢纽大坝心墙防渗土料分散性鉴定及改性试验研究[A];新疆水利学会第七次代表大会获奖论文集[C];2001年

相关硕士学位论文 前10条

1 史祥;分散性土变形特性试验研究[D];西北农林科技大学;2016年

2 任佳宽;吉林省镇赉地区分散性土冲刷机理研究[D];吉林大学;2017年

3 余佳辉;库水环境变化对分散性土工程性质的影响及其作用机理研究[D];西北农林科技大学;2017年

4 徐凝睿;分散性土的电阻率特性研究[D];西北农林科技大学;2017年

5 赵高文;黏性土的分散性影响因素及分散性土的改性研究[D];西北农林科技大学;2013年

6 马晓婷;分散性土抗渗性能的试验研究[D];西北农林科技大学;2011年

7 孙仲林;分散性土动力特性影响因素的试验研究[D];西北农林科技大学;2012年

8 唐自强;分散性土强度特性试验研究[D];西北农林科技大学;2013年

9 路立娜;分散性土单轴抗拉强度影响因素研究[D];西北农林科技大学;2014年

10 边敦典;分散性粘土坝设计方法及土工合成材料应用研究[D];河海大学;2005年



本文编号:1735389

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/1735389.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户71385***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com