充水保压蜗壳结构中钢衬的低周疲劳问题
本文选题:水电站厂房 + 蜗壳 ; 参考:《华中科技大学学报(自然科学版)》2017年08期
【摘要】:鉴于抽水蓄能机组蜗壳通常采用充水保压技术埋入混凝土,在运行期钢蜗壳须要承受频繁的大幅值静水压力循环作用,面临一定程度的低周疲劳失效风险,以某实际充水保压蜗壳结构为例,首先基于ABAQUS有限元分析平台完成了该组合结构的施工-运行过程静力仿真分析,然后基于DesignLife疲劳分析平台,依据有限元静力分析结果采用常幅值荷载的循环方式预测了钢蜗壳的疲劳寿命,其中材料的S-N曲线(应力-寿命曲线)选取为Eurocode3-112.计算结果表明:运行期钢蜗壳的局部脱空现象会对其自身的受力产生不利影响,脱空区-高应力区-高疲劳失效风险区三者间存在显著的因果对应关系.从预测的疲劳寿命数量级(2×10~5以上)看,电站运行期内钢蜗壳无低周疲劳失效的风险.
[Abstract]:In view of the fact that the volute of pumped storage unit is usually embedded in concrete with the technique of water filling and maintaining pressure, the steel volute has to bear frequent hydrostatic pressure cycles with large values during operation, and it faces the risk of low cycle fatigue failure to a certain extent. Taking a practical volute structure with water filling and maintaining pressure as an example, the static simulation analysis of the construction-running process of the composite structure is completed based on ABAQUS finite element analysis platform, and then based on the DesignLife fatigue analysis platform. The fatigue life of steel volute is predicted by the cyclic mode of constant amplitude load according to the static analysis results of finite element method. The S-N curve (stress-life curve) of the material is chosen as Eurocode3-112. The results show that the local void phenomenon of steel volute during running period will have a negative effect on its own forces, and there is a significant causal correspondence between the void zone, the high stress zone and the high fatigue failure risk zone. According to the predicted fatigue life of more than 2 脳 10 ~ (5), there is no risk of low cycle fatigue failure in the steel volute during the operation period of the power station.
【作者单位】: 长江科学院水利部水工程安全与病害防治工程技术研究中心;武汉大学水资源与水电工程科学国家重点实验室;长江勘测规划设计研究院;
【基金】:国家自然科学基金资助项目(51679013,51609020,51679175,51309030) 水资源与水电工程科学国家重点实验室(武汉大学)开放研究基金资助项目(2015SDG02) 中央级公益性科研院所基本科研业务费资助项目(CKSF2016015/GC,CKSF2017067/GC)
【分类号】:TV33
【相似文献】
相关期刊论文 前10条
1 兰扬声;;低周疲劳简介[J];机械;1985年05期
2 蔡力勋,孙亚芳,王理,黄淑珍;考虑温度效应的钛合金钢低周疲劳行为研究[J];核动力工程;2000年06期
3 王刚,郭茂林,程靳;航空发动机涡轮盘低周疲劳与蠕变寿命分析[J];哈尔滨工业大学学报;2000年05期
4 范志超 ,蒋家羚;16MnR中温环境下应力控制的低周疲劳行为研究(下)[J];压力容器;2002年12期
5 范志超,蒋家羚;16MnR钢中温低周疲劳行为研究[J];浙江大学学报(工学版);2004年09期
6 吴海利;朱月梅;贾国庆;;X12CrMoWVNbN10-1-1转子钢室温低周疲劳特性[J];北京科技大学学报;2011年07期
7 张建;唐文献;彭松江;古刚;;炮钢低周疲劳特性预测[J];机械设计与制造;2013年01期
8 王海清;;低周疲劳领域中应力控制与应变控制的关系[J];航空材料;1983年04期
9 乔生儒;王兴国;杨峥;;一种铁基高温合金的高温低周疲劳[J];西北工业大学学报;1984年03期
10 钮效德 ,李光霞;低周疲劳损伤的演变方程[J];华中工学院学报;1985年01期
相关会议论文 前10条
1 张峰;;轮箍低周疲劳性能研究[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
2 张峰;;轮箍低周疲劳性能研究[A];第七届全国MTS材料试验学术会议论文集(二)[C];2007年
3 叶笃毅;徐元东;肖磊;查海波;;低周疲劳过程中304不锈钢细观力学特性的变化特征[A];中国力学学会学术大会'2009论文摘要集[C];2009年
4 焦中良;帅健;;管材的低周疲劳性能分析及应变-寿命公式的确定与验证[A];中国力学学会学术大会'2009论文摘要集[C];2009年
5 邬文睿;王炜哲;刘华锋;刘应征;;660MW超超临界汽轮机高压转子低周疲劳强度分析[A];中国力学学会学术大会'2009论文摘要集[C];2009年
6 刘绍伦;;预应力低周疲劳及弹塑性有限元分析[A];北京力学会第14届学术年会论文集[C];2008年
7 吴海利;朱月梅;贾国庆;;X12CrMoWVNbN10-1-1转子钢室温低周疲劳试验特性分析[A];2010年海峡两岸材料破坏/断裂学术会议暨第十届破坏科学研讨会/第八届全国MTS材料试验学术会议论文集[C];2010年
8 叶序彬;胡本润;谭卫东;;腐蚀环境下低周疲劳试验技术研究[A];2012年海峡两岸破坏科学/材料试验学术会议论文摘要集[C];2012年
9 耿黎明;严仁军;杨宇华;张新宇;;大潜深结构的低周疲劳研究[A];第16届全国疲劳与断裂学术会议会议程序册[C];2012年
10 徐坚;钟曼英;郭世行;;氢反应器壁材料的低周疲劳特性[A];疲劳与断裂2000——第十届全国疲劳与断裂学术会议论文集[C];2000年
相关重要报纸文章 前1条
1 龚士弘 盛光敏;震区用钢知识问答[N];中国冶金报;2002年
相关博士学位论文 前10条
1 周红伟;超(超)临界机组用钢的高温低周疲劳行为研究[D];东南大学;2015年
2 吴德龙;载荷模式对9-12%Cr钢高温低周疲劳行为影响及循环本构研究[D];华东理工大学;2016年
3 冷利;挤压变形Al-7.2Zn-2.5Mg-1.5Cu-0.08Zr-0.12Sc合金的组织与低周疲劳行为[D];沈阳工业大学;2016年
4 赵萍;航空发动机单晶叶片的多轴低周疲劳研究[D];中南大学;2011年
5 范志超;压力容器用钢16MnR中温应力控制下的低周疲劳行为及寿命评估技术研究[D];浙江大学;2003年
6 王璐;复杂应力状态下高温低周疲劳短裂纹行为研究[D];大连理工大学;2012年
7 李贵军;特种压力容器用钢2.25Cr1Mo的中温低周疲劳行为及寿命评估技术的研究[D];浙江大学;2004年
8 李聪;锆合金的低周疲劳行为研究[D];四川大学;2003年
9 田雨;船体结构低周疲劳损伤极限强度研究[D];大连理工大学;2011年
10 丁智平;复杂应力状态镍基单晶高温合金低周疲劳损伤研究[D];中南大学;2005年
相关硕士学位论文 前10条
1 蔡霄天;细晶有色金属低周疲劳性能研究[D];南京理工大学;2015年
2 袁丽佳;局部锈蚀钢材低周疲劳性能的试验研究与理论分析[D];广西大学;2015年
3 王s,
本文编号:1840958
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/1840958.html