地源热泵与雨水收集联合技术单元体研究
发布时间:2018-05-06 21:47
本文选题:联合单元体 + 地源热泵 ; 参考:《重庆大学》2014年硕士论文
【摘要】:地源热泵与雨水收集联合单元体技术是将地源热泵技术与雨水收集利用技术结合起来的一种技术创新形式,兼具换热与蓄水两方面的功能。这种技术创新形式打破了传统雨水蓄存与利用思维,利用地埋管换热器为载体,通过合适的渗水管设计,将经处理过的地面雨水蓄存至岩土不同深度、不同类型的含水层中;在蓄水的同时,对地埋管换热器的换热性能也有一定程度的改善。因此,研究联合技术单元体的蓄水-换热特性为城市雨洪灾害的控制提供了一种新的思路,为地下水平衡补给提供了一种新的方法,为地源热泵系统的优化设计提供了一个切入点,具有明确的工程实践价值。 文章从实验研究的角度出发,建立了联合技术单元体实验研究技术平台,通过实验研究与分析,获得了单元体蓄水-换热过程的基本特性;在分析了多孔介质传热、传质理论的基础上,建立了潜水含水层理论蓄水方程,并与实验蓄水量进行了比较分析,,验证了计算方程的正确性;在实验与理论分析的基础上,建立了单元体技术蓄水-换热耦合过程的数值模型,通过Fluent软件模拟分析了单元体技术的耦合过程特性;最后提出了联合技术在工程实践中的应用方法。 实验研究结果表明,不同岩层深度的静水水压不同,场地-80m深度处水压较-30m深度处水压高4.87m;单元体蓄水过程分为初期阶段与稳定蓄水期阶段,B单元体稳定蓄水阶段的平均蓄水能力为0.19L/min;将渗水管入口初始压力提高为5m水柱时,平均蓄水能力可达到0.24L/min;单元体间歇蓄水过程存在蓄水痕迹,蓄水恢复期越长,蓄水痕迹越小。单元体蓄水能力与渗水孔孔径、数量、渗水孔的竖向分布以及岩土体的自身的渗透性能有关,单元体工程设计应保证渗水管的流通能力大于钻孔外渗透能力,充分发挥岩土体蓄水潜力。 单元体排热引起的水分变化是一个缓慢的过程,而排热结束后的水分恢复过程可在较短时间内完成;含水率的恢复时间远小于含水率的变化时间。由于传热过程中对流比例的增加,蓄水-排热耦合过程中,单元体的温度扩散能力大于排热工况,可有效增大温度扩散半径,增加钻孔壁面与管壁的平均传热温差;根据C单元体实验结果,蓄水过程可将换热能力提高9.8%。理论计算结果表明,B单元体蓄水能力为0.155L/min,低于实验过程的稳定阶段的蓄水能力0.19L/min,这是由于理论蓄水计算的假设条件为泥岩地质,而实际单元体为原生土与泥岩的复合构造,其渗透性较泥岩地质优越。
[Abstract]:Ground-source heat pump (GSHP) combined with Rain Water collection unit technology is a kind of technical innovation form which combines ground-source heat pump technology with Rain Water collection and utilization technology, and has the functions of heat transfer and water storage. This kind of technological innovation has broken the traditional thinking of Rain Water storage and utilization. By using the underground heat exchanger as the carrier, the treated surface Rain Water is stored in different depth and different types of aquifer through the proper design of the seepage pipe. At the same time, the heat transfer performance of buried tube heat exchanger is improved to some extent. Therefore, the study of the water-heat transfer characteristics of the combined technical unit provides a new idea for the control of urban rain-flood disaster and a new method for the balanced recharge of groundwater. It provides a breakthrough point for the optimal design of ground source heat pump system and has definite engineering value. From the point of view of experimental research, this paper establishes the experimental research platform of combined technical unit body. Through the experimental research and analysis, the basic characteristics of the water storage and heat transfer process of the unit body are obtained, and the heat transfer in porous media is analyzed. On the basis of mass transfer theory, the theoretical water storage equation of submersible aquifer is established, and compared with the experimental storage capacity, the correctness of the calculation equation is verified, and on the basis of experimental and theoretical analysis, The numerical model of the coupled water storage and heat transfer process of the unit body technology is established, the coupling process characteristics of the unit body technology are simulated and analyzed by Fluent software, and the application method of the combined technology in engineering practice is put forward. The experimental results show that the hydrostatic pressure of different strata is different. The water pressure at -80 m depth is 4.87 m higher than that at -30 m depth, and the average water storage capacity of unit B is 0.19 L / min, when the initial pressure at the inlet of seepage pipe is increased to 5m water column, the average water storage capacity of unit B is 0.19 L / min. The average water storage capacity can reach 0.24L / min, and the water storage trace exists in the intermittent water storage process of the unit body, and the longer the water storage recovery period is, the smaller the water storage trace is. The water storage capacity of the unit body is related to the pore diameter, the quantity of the seepage hole, the vertical distribution of the seepage hole and the permeability of the rock and soil. The engineering design of the unit body should ensure that the circulation capacity of the seepage pipe is greater than that of the permeability outside the borehole. Give full play to the water storage potential of rock and soil. The change of water content caused by the heat release of unit body is a slow process, and the water recovery process after heat discharge can be completed in a relatively short time, and the recovery time of water content is much smaller than that of water content. Due to the increase of convection ratio in the heat transfer process, the temperature diffusion capacity of the unit is larger than that of the heat removal in the coupled process of water storage and heat removal, which can effectively increase the temperature diffusion radius and increase the average heat transfer temperature difference between the borehole wall and the tube wall. According to the experimental results of the C unit, the heat transfer capacity can be increased by 9.8% during the water storage process. The theoretical calculation results show that the water storage capacity of unit B is 0.155 L / min, which is lower than that of 0.19 L / min in the stable stage of the experimental process. This is because the assumption of theoretical water storage calculation is mudstone geology, while the actual unit body is a composite structure of probiotic soil and mudstone. Its permeability is superior to mudstone geology.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TU83;TV213.9
【参考文献】
相关期刊论文 前10条
1 刘为民,何平,张钊;土体导热系数的评价与计算[J];冰川冻土;2002年06期
2 唐志伟;时晓燕;黄俊惠;王晓涛;;地源热泵U型管地下换热器的数值模拟[J];北京工业大学学报;2006年01期
3 杨卫波;施明恒;;地源热泵中U型埋管传热过程的数值模拟[J];东南大学学报(自然科学版);2007年01期
4 王勇,付祥钊;地源热泵的套管式地下换热器研究[J];重庆建筑大学学报;1997年05期
5 高青,李明,乔广,于鸣,玄哲浩;间歇过程地温恢复特性及其规律模拟计算分析[J];热科学与技术;2004年03期
6 高青,李明,于鸣,玄哲浩,乔广;湿土壤含湿特性对传热影响研究[J];热科学与技术;2005年02期
7 刁乃仁,曾和义,方肇洪;竖直U型管地热换热器的准三维传热模型[J];热能动力工程;2003年04期
8 曾和义,刁乃仁,方肇洪;竖直埋管地热换热器的稳态温度场分析[J];山东建筑工程学院学报;2002年01期
9 曾和义,方肇洪;双U型埋管地热换热器的传热模型[J];山东建筑工程学院学报;2003年01期
10 李元旦,张旭;土壤源热泵的国内外研究和应用现状及展望[J];制冷空调与电力机械;2002年01期
相关博士学位论文 前1条
1 於仲义;土壤源热泵垂直地埋管换热器传热特性研究[D];华中科技大学;2008年
本文编号:1854041
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/1854041.html