高雷诺数三维顶盖驱动方腔流实验研究
发布时间:2018-05-25 16:58
本文选题:顶盖驱动方腔水流 + 实验研究 ; 参考:《天津大学》2014年硕士论文
【摘要】:方腔流作为验证数值模拟计算效率和计算准确度的标准算例和衡量准则,受到了各领域学者的广泛研究。然而,方腔水流的三维实验研究由于实验设备和可视化技术的限制,方腔雷诺数只能达到1×104,不能满足数值模拟技术的高速发展。如何为高雷诺数条件下方腔水流数值模型提供验证数据成为亟待解决的问题。本文对高雷诺数顶盖驱动方腔流进行了实验研究,对高雷诺数(1×10~5~1×10~6)方腔内部流场进行了分析,并根据实验数据推求得到大涡模拟的Smagorinsky常数取值。主要研究内容和结论如下:(1)使用粒子图像测速技术(Particle Image Velocimetry,PIV)测得方腔剖面流场数据,对数据进行分析和处理,得到不同雷诺数中性面流场、流线和速度剖面。对方腔水流动力特性进行分析,结果表明在雷诺数为1×10~5到1×10~6之间,流场边界层的变化仍符合随着雷诺数的增大而变薄的趋势。(2)分析了下游次级涡旋(Downstream Secondary Eddy,DSE)和上游次级涡旋(Upstream Secondary Eddy,USE)随着雷诺数的变化情况,对已有的DSE大小随雷诺数的变化曲线进行延伸,补充了高雷诺数条件下DSE和USE大小和雷诺数的关系曲线。结果显示在雷诺数为1×10~5到1×10~6范围内,随着雷诺数的增大,次级涡旋区域逐渐缩小,到雷诺数为1×10~6时基本消失。(3)根据量纲分析和大涡PIV求解紊流耗散率的方法公式联立,求得大涡模拟Smagorinsky常数在方腔中的分布。结果表明Smagorinsky常数从边壁到中心处从零开始增大,增大到最大值之后又开始减小,到初级涡旋的中心附近又减为零。
[Abstract]:Square cavity flow, as a standard example and criterion to verify the efficiency and accuracy of numerical simulation, has been widely studied by scholars in various fields. However, due to the limitation of experimental equipment and visualization technology, the Reynolds number of square cavity can only reach 1 脳 104, which can not meet the rapid development of numerical simulation technology. How to provide validation data for the numerical model of cavity flow under high Reynolds number is an urgent problem to be solved. In this paper, the flow field in a square cavity driven by a high Reynolds number cap is studied experimentally. The flow field in a square cavity with a high Reynolds number of 1 脳 10 ~ (5) / 1 脳 10 ~ (6) is analyzed, and the Smagorinsky constant of large eddy simulation is derived from the experimental data. The main contents and conclusions are as follows: 1) the flow field data of square cavity profile are measured by particle Image velocimetry (PIV). The data are analyzed and processed, and the flow fields, streamlines and velocity profiles on different Reynolds numbers are obtained. The results show that the Reynolds number ranges from 1 脳 10 ~ (5) to 1 脳 10 ~ (6). The variation of the boundary layer of the flow field is still consistent with the trend of thinning with the increase of Reynolds number.) the variation of the downstream secondary vortex Downstream Secondary Eddy DSEs and the upstream secondary vortex Upstream Secondary Eddy USE) with Reynolds number is analyzed. The existing curve of DSE size with Reynolds number is extended to supplement the relation curve between DSE and USE size and Reynolds number under the condition of high Reynolds number. The results show that in the range of 1 脳 10 ~ (5) to 1 脳 10 ~ (6), with the increase of Reynolds number, the secondary vortex region gradually shrinks, and by 1 脳 10 ~ (6) Reynolds number basically disappears. The distribution of Smagorinsky constant in square cavity is obtained by large eddy simulation. The results show that the Smagorinsky constant increases from zero to the center from the side wall to the center, then decreases to the maximum value, and then decreases to zero near the center of the primary vortex.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TV131.3
【相似文献】
相关期刊论文 前10条
1 沈浩;范维澄;;带运动顶盖的封闭方腔内湍流流场的计算[J];空气动力学学报;1989年01期
2 姜昌伟;李贺松;陈冬林;石尔;朱先锋;李茂;;线圈绕Y轴倾斜时方腔内空气磁力与重力耦合对流的数值模拟[J];计算力学学报;2011年04期
3 何士华;张立翔;徐天茂;;方腔双壁反向驱动流涡结构演化的数值模拟[J];力学季刊;2009年02期
4 孟庆国,,吴立新,黄永念;方腔中的旋涡运动[J];水动力学研究与进展(A辑);1995年04期
5 刘智益;王晓东;康顺;;多元多项式混沌法在随机方腔流动模拟中的应用[J];工程热物理学报;2012年03期
6 姬朝s
本文编号:1933972
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/1933972.html