心形线双曲拱坝体型建模与有限元分析
发布时间:2018-06-18 08:44
本文选题:心形线 + 双曲拱坝 ; 参考:《重庆交通大学》2014年硕士论文
【摘要】:随着我国经济发展的突飞猛进,国家各个行业对电力的需求也越来越大,水电作为一种可持续发展的能源战略方针,对国家经济和社会发展有着巨大的贡献,但水电能源作为潜在的健康能源,在我国的已开发程度远远不及欧美国家,因此开发利用我国丰富的水电资源成为水利水电建设的重要任务之一,而拱坝作为一种既安全稳定,又经济美观的坝型,在现代水利水电建设中发挥着重要的作用,尤其是在地质地形条件较好的峡谷中,有着不可替代的作用。人类修建拱坝有着悠久的历史,拱坝的线形也从最早开始的圆弧拱坝,发展到后来的抛物线拱坝,椭圆拱坝,双曲线拱坝,三次样条曲线拱坝,对数螺线拱坝以及混合曲线拱坝,可以看出拱坝线形的设计与研究已日趋成熟,但实际上这仅仅限于上述已有的拱坝线形研究,如果不创新突破,拱坝线形的研究终将停滞不前,同时拱坝未来的发展趋势是面对更多不利的地质地形条件,这样就需要更多的线形来进行对比论证,所以研究一种新线形对拱坝发展至关重要。本文在这样的背景之下,首先提出了一种拱坝拱圈的新线形——心形线,以心形线为创新出发点和研究对象,推导了心形线作为拱坝拱圈中轴线的数学方程并建立了心形线双曲拱坝的数学模型,并通过在AutoCAD中与C语言程序设计结合实现了心形线双曲拱坝的三维实体模型的程序智能绘制;然后介绍了有限元法的相关原理和ANSYS软件的相关应用;接着设计了心形线双曲拱坝在ANSYS中参数化建模的程序;再接着在ANSYS中对心形线双曲拱坝在特殊荷载工况下进行仿真模拟,根据在有限元分析应力结果,得出心形线作为拱坝拱圈的一种新线形的合理性,再通过与抛物线双曲拱坝进行对比,得出心形线双曲拱坝的优缺点。心形线双曲拱坝的提出及体型建模将为新的拱坝研究与发展提供理论基础和科学依据。 作为本论文中研究重点的心形线,其本身的直角坐标系方程用于拱坝建模十分复杂,但通过与心形线的极坐标方程结合,找到了心形线作为拱坝线形进行建模的突破点,因此首先根据心形线的极坐标方程推导了心形线作为拱圈中轴线的数学方程,建立了心形线的极角与拱坝半中心角之间的数学关系,结合已建拱坝的体型参数特点,初步设定了半中心角,就可得到心形线本身的参数,根据已得到的心形线参数,就可建立心形线拱圈中轴线的数学方程以及上下游拱圈的数学方程,通过与设计规范中的拱冠梁数学方程结合,并利用C语言程序设计进行编程,实现了心形线双曲拱坝坐标点的计算和绘制,,曲线的拟合,曲面的生成以及拱坝体型的建模;在完成初步建模之后,便可在ANSYS中进行应力分析,并根据有限元分析结果,对应力不符合设计规范的部位进行参数的调整,最终可得到符合设计规范的心形线双曲拱坝,本文为以后进行心形线双曲拱坝的优化设计奠定了基础。
[Abstract]:With the rapid development of China's economy, the demand for electricity is increasing in all industries. As a sustainable energy strategy, hydropower has a great contribution to the national economy and social development. However, as a potential healthy energy source, hydropower is far less developed in our country than in Europe and the United States. The development and utilization of rich water and electricity resources in China has become one of the important tasks of water conservancy and hydropower construction, and arch dam, as a kind of safe and stable, economical and beautiful dam, plays an important role in the construction of modern water conservancy and hydropower, especially in the gorge valley with better geological and terrain conditions. The arch dam has a long history, and the line shape of the arch dam is also developed from the earliest arc arch dam to the later parabolic arch dam, the ellipse arch dam, the hyperbolic arch dam, the three spline curve arch dam, the logarithmic spiral arch dam and the mixed curve arch dam. It can be seen that the design and research of the arch dam alignment have matured increasingly, but in fact it is only limited to the above mentioned above. If there is no breakthrough in some arch dams, the research of arch dam alignment will eventually stagnate, and the future development trend of arch dam is to face more unfavorable geological and topographic conditions, so it needs more linear shape to compare and demonstrate, so it is very important to study a new line shape for the development of arch dam. This paper is in this background. At first, a new line of arch dam arch ring, heart shape line, is proposed. The mathematical equation of the heart shape line as the central axis of arch dam arch is derived and the mathematical model of the heart shape line hyperbolic arch dam is established, and the hyperbolic arch of the heart line is realized by combining the program design of the AutoCAD with the C language program. The program intelligent drawing of the 3D solid model of the dam is made, and then the related principles of the finite element method and the related application of the ANSYS software are introduced. Then the parameterized modeling program of the hyperbolic arch dam in the ANSYS is designed, and then the simulation of the hyperbolic arch dam of the heart shape line in the special load condition is carried out in the ANSYS. According to the analysis of the stress results, the reasonableness of the heart shape line as a new line of arch dam arch ring is obtained. By comparing with the parabolic hyperbolic arch dam, the advantages and disadvantages of the hyperbolic arch dam of the heart shape line are obtained. The proposal of the hyperbolic arch dam of the heart line and the shape modeling will provide the theoretical basis and scientific basis for the new arch dam research and development.
As the focus line of the study in this paper, its own rectangular coordinate system is very complex for the modeling of arch dam, but by combining with the polar coordinate equation of the heart shape line, the breakthrough point of the heart shape line as the shape of the arch dam is found, so the heart line is derived as the central axis of the arch, according to the polar coordinate equation of the heart shape line. The mathematical relation between the pole angle of the heart shape line and the half center angle of the arch dam is established, and the parameters of the heart shape line can be obtained by combining the characteristics of the shape parameters of the arch dam, and the parameters of the heart shape line can be obtained. The mathematical equation is combined with the mathematical equation of the arch crown beam in the design code, and is programmed by C programming. The calculation and drawing of the coordinate point of the hyperbolic arch dam of the heart shape line, the fitting of the curve, the formation of the curved surface and the modeling of the shape of the arch dam are realized, and the stress analysis can be carried out in the ANSYS after the initial step modeling is completed. According to the result of the finite element analysis, the parameters are adjusted according to the parts of the force which do not conform to the design standard. Finally, the double curved arch dam which meets the design standard can be obtained. This paper lays a foundation for the optimization design of the hyperbolic arch dam of the heart shape.
【学位授予单位】:重庆交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TV642.4
【参考文献】
相关期刊论文 前7条
1 张姣,丁成辉;国内拱坝优化的研究现状及动态[J];南昌水专学报;2004年02期
2 于丙子,张德文;ANSYS在三峡导流底孔封堵温度场分析中的应用[J];人民长江;2003年02期
3 朱伯芳;中国拱坝建设的成就[J];水力发电;1999年10期
4 赵晓西,王宗敏,朱太山,周鸿钧;ANSYS软件在高进水塔静动力分析中的应用[J];水力发电;2005年03期
5 王文娟;谢能刚;孙林松;;高拱坝体型多目标优化设计研究进展[J];水利水电科技进展;2007年01期
6 谢能刚;孙林松;包家汉;方浩;;基于无私合作博弈模型的拱坝体型多目标优化设计[J];水利学报;2007年09期
7 谢能刚,王德信,孙林松;能量函数在高拱坝动力优化设计中的应用[J];应用力学学报;2002年02期
本文编号:2034878
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2034878.html