珠海电厂航道及附近水域冲淤研究
本文选题:河口航道 + 地形冲淤 ; 参考:《华南理工大学》2015年硕士论文
【摘要】:航道,作为连接港口内外的纽带,是船舶进出港口的通道,在港口建设和运营中起着至关重要的作用。但世界上许多港口和航道都遭受着泥沙淤积问题,不得不通过整治和维护疏浚来保持需要的水深。本文模拟计算珠海电厂航道及附近水域的地形冲淤,分析泥沙输移特征,探讨潮流、波浪和风等动力因素及工程因素对冲淤的影响,主要研究内容及成果如下:(1)运用Delft3D软件建立黄茅海河口湾二维泥沙数学模型,通过水位、流速、流量和含沙量验证后,对珠海电厂航道及附近水域的洪、枯季地形冲淤进行模拟计算。(2)计算结果显示,冲淤分布规律与水动力条件和地形密切相关。无论洪季还是枯季,冲刷范围均呈带状分布于大芒岛-三角山-南水岛峡口和荷包岛-高栏岛峡口间的主流带区域,淤积发生在冲刷带两侧。洪、枯季均以淤积为主,但洪季淤积更严重,枯季冲刷更严重。电厂航道沿程淤积强度呈“中间大、两头小”的特征,洪、枯季最大淤强分别为0.89m/年和0.81m/年,全段航道沿程平均淤强分别为0.59m/年和0.49m/年。(3)统计各峡口断面的泥沙输移量:洪季计算时段内,从三角山-南水岛、大芒岛-三角山、荷包岛-高栏岛和荷包岛-大芒岛4个断面向高栏港水域输入泥沙体积比为2.9:9.2:8.5:1,输出泥沙体积比为0.5:1.1:1.9:1;枯季计算时段内,从这4个断面输入泥沙体积比为10.8:26.3:11.2:1,输出泥沙体积比为1.5:2.6:2.9:1.大芒岛-三角山-南水岛和荷包岛-高栏岛峡口是高栏港水域泥沙输移的主要通道。(4)探讨潮流、波浪和风对珠海电厂航道及附近水域冲淤的影响,发现波浪对冲淤的影响较为明显。(5)防波堤能够有效降低电厂航道的最大淤强和平均淤强,对电厂航道起到了显著的减淤效果。随着防波堤长度加长,减淤效果逐渐提高,但提高的幅度逐渐降低。能否通过加长防波堤来进一步降低电厂航道的泥沙淤积强度、缓解航道泥沙淤积问题,还需要更深入的研究与论证。
[Abstract]:As a link between port and port, waterway is the passage for ships to enter and exit port, which plays an important role in port construction and operation. However, many ports and waterways in the world suffer from silt deposition, and they have to maintain the depth of water by dredging and dredging. In this paper, the topography scouring and siltation of the channel and nearby waters of Zhuhai Power Plant are simulated and calculated, and the characteristics of sediment transport are analyzed, and the influence of dynamic factors, such as tidal current, wave and wind, and engineering factors on the siltation is discussed. The main research contents and results are as follows: (1) using Delft 3D software, the two-dimensional sediment mathematical model of Huangmaohai Estuary Bay is established. After the verification of water level, velocity, discharge and sediment content, the flood in the channel and nearby waters of Zhuhai Power Plant is studied. (2) the results show that the distribution of scour and deposition is closely related to hydrodynamic conditions and topography. No matter in flood season or dry season, the scour range is distributed in the mainstream zone between Dawangdao, Triangle Mountain and Nanshui Island fjords and between Hebao Island and Gaolan Island fjords, where siltation occurs on both sides of the scouring zone. Flood, dry season are mainly silt, but the flood season silt is more serious, dry season scour is more serious. The siltation intensity along the channel of the power plant shows the characteristics of "middle big, two ends small". The maximum siltation intensity in flood and dry season is 0.89m/ year and 0.81m/ year, respectively. The average siltation intensity along the whole channel is 0.59m/ year and 0.49m/ year respectively. (3) count the sediment transport amount of each Fjakou section: during the calculation period of flood season, from Triangle Mountain to Nanshui Island, from Big Mang Island to Triangle Mountain, from Triangle Mountain to Nanshui Island, from Big Mang Island to Triangle Mountain, The volume ratio of sediment input from the four sections of Hebao Island, Gaolan Island and Homao Island to the waters of Gaolan Port is 2.9: 9.2: 8.5: 1, and the ratio of output sediment volume to that of output sediment is 0.5: 1.1: 1.91. In the dry season calculation period, the ratio of input sediment volume to sediment volume from these four sections is 10.8: 26.3: 11.2: 1, and the output sediment volume ratio is 1.5: 2.6: 2.91. Damang Island, Triangle Mountain, Nanshui Island and Hebao Island, Gaolan Island, are the main channels for sediment transport in Gaolan Harbor. (4) the influence of tidal current, wave and wind on the erosion and siltation of the channel and nearby waters of Zhuhai Power Plant is discussed. It is found that the influence of wave against siltation is obvious. (5) Breakwater can effectively reduce the maximum siltation intensity and average siltation intensity of the channel of power plant and play a significant role in reducing the siltation of the channel of power plant. As the length of breakwater lengthens, the silt reduction effect increases gradually, but the increasing range decreases gradually. It is necessary to further study and prove whether it is possible to further reduce the siltation intensity of the waterway of power plant by lengthening the breakwater and alleviate the problem of siltation in the waterway.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TV148
【参考文献】
相关期刊论文 前10条
1 张心凤;蒋星科;徐峰俊;;高栏港回淤计算数学模型研究[J];广东水利水电;2006年01期
2 张心凤;蒋星科;;珠海港高栏港区航道回淤估算研究[J];广东水利水电;2009年12期
3 李瑞杰,王昌杰,邵宇阳,陶爱峰;珠江口崖门出海航道回淤分析[J];中国港湾建设;2005年02期
4 张玮;李醒;解鸣晓;唐磊;;连云港外海含沙量推求及航道回淤预测[J];中国港湾建设;2008年03期
5 何杰;辛文杰;;崖门出海航道疏浚工程潮流泥沙变化数值模拟[J];中国港湾建设;2009年03期
6 孙林云;孙波;刘建军;韩信;;京唐港粉沙质海岸风暴潮骤淤及整治工程措施物理模型试验[J];中国港湾建设;2010年S1期
7 秦福寿;珠海港进港航道设计[J];港工技术;1996年03期
8 周鸿权;李伯根;;象山港航道冲淤变化初步分析[J];海洋通报;2007年04期
9 胡日军;吴建政;朱龙海;马芳;;黄骅港抛泥区泥沙运移及对航道淤积的影响[J];海洋地质与第四纪地质;2009年01期
10 刘家驹,陈勇,陈家润;高栏港泥沙淤积问题研究[J];海洋工程;1993年03期
相关会议论文 前2条
1 孙林云;刘建军;孙波;韩信;;京唐港泥沙淤积及工程措施研究[A];第十二届中国海岸工程学术讨论会论文集[C];2005年
2 孙连成;杨华;张庆河;;京唐港外航道泥沙淤积试验研究[A];第十二届中国海岸工程学术讨论会论文集[C];2005年
相关博士学位论文 前1条
1 刘杰;长江口深水航道河床演变与航道回淤研究[D];华东师范大学;2008年
相关硕士学位论文 前7条
1 范翻平;基于Delft3D模型的鄱阳湖水动力模拟研究[D];江西师范大学;2010年
2 楼飞;长江口深水外航道海域沉积和冲淤环境研究[D];华东师范大学;2005年
3 王鹤荀;秦皇岛十万吨级航道工程方案研究[D];大连海事大学;2005年
4 周丽娜;我国沿海港口物流发展模式研究[D];武汉理工大学;2006年
5 黄志扬;连云港淤泥质海岸深水航道泥沙淤积数值研究[D];河海大学;2007年
6 张丽珍;黄骅港海域泥沙运动的三维数学模拟[D];天津大学;2008年
7 胡明军;深圳河湾水流泥沙数值模拟及对防洪方案计算[D];清华大学;2011年
,本文编号:2076906
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2076906.html