红黏土塑性混凝土防渗墙在坝基覆盖层中的应力变形数值模拟研究
本文选题:红黏土塑性混凝土防渗墙 + 覆盖层 ; 参考:《昆明理工大学》2017年硕士论文
【摘要】:土石坝为水利工程中最古老的一种坝形,在国内因其取材方便、施工简单被广泛应用,但大多数修建在上个世纪,由于施工技术及资金的限制,工程质量较差,目前多数带病运行,亟需进行除险加固。我国云南省有着大量的红黏土资源,是红黏土塑性混凝土的主要原料。本次模拟采用云南红黏土塑性混凝土防渗墙作为坝基防渗体,利用三维有限元分析软件对云南省石林县某水库进行了红黏土塑性混凝土防渗墙与两侧覆盖层的应力变形及防渗的数值模拟分析,计算中各分区均采用Duncan-eb模型,水位分别为校核洪水位、正常蓄水位及死水位,墙体厚度分别为0.3m、0.4m及0.5m,利用前处理软件HyperMesh进行建立模型、划分网格,利用非线性功能较强的有限元软件ABAQUS进行计算。计算中对分层填筑进行模拟、并考虑地应力平衡及网格划分的合理性及流固耦合的相互作用,保证数值模拟的精确性。对校核洪水位、正常蓄水位及死水位下0.3m、0.4m及0.5m厚防渗墙进行计算,分析对比各工况下防渗墙的应力情况、防渗效果及与覆盖层的变形协调性。计算结果显示,在坝基加入防渗墙后,坝体及防渗墙的应力变形值均在合理范围内,但防渗墙的墙顶及墙底处大主应力均发生不同程度的应力突变,经过对比分析判断,突变应力值未达到红黏土塑性混凝土的破坏值,理论上不会发生破坏。本文通过查阅大量的文献和研究,对斜墙下覆盖层中红黏土塑性混凝土防渗墙在不同水位和不同墙厚的工况下进行分析研究,主要结论如下:(1)在校核洪水位、正常蓄水位和死水位下,防渗墙的铅锤向的位移随着墙体厚度的增大而减小,各工况下协调性均在合理范围内,死水位下墙体铅垂向位移小于校核洪水位及正常蓄水位;顺河向位移最大值随着墙体厚度的增加而减小,且随着水位的下降,最大值发生高程点向墙顶偏移,且有向上游移动的趋势。(2)校核洪水位、正常蓄水位及死水位作用下,防渗墙顶部垂直应力值为墙底的50%-60%,随着水位的下降和墙厚的增加,防渗墙内部垂直应力值减小,有利于改善墙体内部应力不均的情况。(3)在校核洪水位、正常蓄水位及死水位作用下,各工况下墙体内部的大、小主应力均为压应力为主,其中大主应力只在墙体两端连接处出现极小部分的拉应力区,且数值极小。(4)在校核洪水位、正常蓄水位和死水位下,防渗墙厚度分别0.3m、0.4m和0.5m厚,浸润线均发生了不同程度的降低,且随着防渗墙厚度的增加,年渗漏量有减小的趋势。
[Abstract]:Earth rock dam is one of the oldest type of dam in water conservancy project. It is widely used in China because of its convenience. But most of it was built in the last century. Because of the construction technology and capital limitation, the quality of the project is poor. At present, most of the diseases run and need to be strengthened and strengthened. There are a large number of red clay resources in Yunnan province of China. The main raw material of the plastic concrete of red clay. This simulation uses the Yunnan red clay plastic concrete anti seepage wall as the dam foundation impervious body, and uses the three-dimensional finite element analysis software to carry on the numerical simulation analysis of the stress, deformation and seepage prevention of the red clay plastic concrete impervious wall and the two sides covering layer of a reservoir in Shilin County of Yunnan province. The Duncan-eb model is used in each area. The water level is checked for the flood water level, the normal water level and the dead water level. The thickness of the wall is 0.3m, 0.4m and 0.5m respectively. The model is set up by the pretreatment software HyperMesh, and the grid is divided by the finite element software ABAQUS, which has strong nonlinear function, and the layered filling is simulated in the calculation. Considering the rationality of geostress equilibrium and the rationality of grid partition and the interaction of fluid solid coupling, the accuracy of numerical simulation is ensured. The calculation of 0.3m, 0.4m and 0.5m thick impervious wall is carried out to check the flood water level, normal water level and dead water level, and to analyze and compare the stress situation of the impervious wall under various working conditions, the effect of seepage prevention and the deformation coordination with the cover layer. The calculation results show that the stress and deformation values of the dam and the impervious wall are in a reasonable range after the dam foundation is added to the dam, but the stress catastrophe of the main stress at the top of the wall and the bottom of the wall has been changed in varying degrees. After the comparison and analysis, the value of the catastrophe stress does not reach the damage value of the plastic concrete of the red clay, and it will not be damaged in theory. By consulting a lot of literature and research, this paper analyzes and studies the plastic concrete impervious wall in the overlay layer under the oblique wall under the conditions of different water level and different wall thickness. The main conclusions are as follows: (1) the displacement of the lead hammer of the impervious wall decreases with the increase of the thickness of the wall under the water level in the school, the normal water level and the dead water level. The vertical displacement of the wall lead under the dead water position is less than the check flood water level and the normal storage position under the dead water position. The maximum value of the downstream displacement decreases with the increase of the wall thickness, and with the decline of the water level, the maximum value shifts to the top of the wall and moves upstream. (2) check the flood water level, normal Under the action of water storage and dead water level, the vertical stress at the top of the impervious wall is 50%-60% at the bottom of the wall. With the decrease of water level and the increase of wall thickness, the value of vertical stress in the impermeable wall decreases, which is beneficial to improve the uneven stress inside the wall. (3) under the action of the water level in the school, the normal water level and the dead water level, the wall inside the wall is large under the various working conditions. The stress of the small main stress is mainly pressure stress, in which the main stress is only in the small part of the tensile stress zone at the end of the wall, and the value is very small. (4) the depth of the core flood, the normal water level and the dead water level, the thickness of the impervious wall are 0.3m, 0.4m and 0.5m, and the infiltration line has been reduced in varying degrees, with the increase of the thickness of the seepage proof wall. The annual leakage has a tendency to decrease.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TV223.42
【参考文献】
相关期刊论文 前10条
1 江时俊;杨具瑞;汤敏;王强;李谈谈;;沥青混凝土心墙与过渡层变形协调性及防渗的影响研究[J];水力发电学报;2016年04期
2 束一鸣;吴海民;姜晓桢;;中国水库大坝土工膜防渗技术进展[J];岩土工程学报;2016年S1期
3 侯伟建;朱晟;;土石坝沥青混凝土心墙水力劈裂研究[J];中国农村水利水电;2015年11期
4 沈振中;邱莉婷;周华雷;;深厚覆盖层上土石坝防渗技术研究进展[J];水利水电科技进展;2015年05期
5 付于堂;郭敏敏;;塑性混凝土防渗墙在深厚覆盖层中的应用[J];水利水电技术;2015年07期
6 李世娟;;小型水库土石坝稳定分析[J];水利建设与管理;2015年03期
7 宋博;何江涛;刘长礼;;不同荷载作用下塑性混凝土渗透性试验研究[J];南水北调与水利科技;2015年02期
8 周建烽;王均星;陈炜;罗贝尔;;线性与非线性强度的土石坝坝坡稳定分析下限法[J];岩土力学;2015年01期
9 吴福飞;侍克斌;董双快;慈军;努尔开力·依孜特罗甫;;塑性混凝土的长期渗流溶蚀稳定性试验[J];农业工程学报;2014年22期
10 宋力;常芳芳;;塑性混凝土应力应变特性的试验研究[J];南水北调与水利科技;2014年02期
相关博士学位论文 前1条
1 吴春秋;非线性有限单元法在土体稳定分析中的理论及应用研究[D];武汉大学;2004年
相关硕士学位论文 前10条
1 苏渊;塑性混凝土防渗墙对土石坝稳定性的影响分析[D];山东大学;2013年
2 靳旭;拱坝在水压力下开裂的数值模拟[D];昆明理工大学;2013年
3 吴晓野;土石坝三维地质建模及有限元分析研究[D];南昌大学;2012年
4 董存军;考虑渗流效应的大型土石围堰稳定性研究[D];重庆大学;2012年
5 王挺力;册田水库溢洪道水力特性物理模型试验和三维数值模拟[D];太原理工大学;2012年
6 汤俊杰;塑性混凝土基本性能研究[D];郑州大学;2010年
7 滕彦磊;塑性混凝土防渗墙应力变形有限元分析[D];郑州大学;2010年
8 许莹莹;土石坝地基混凝土防渗墙应力变形数值模拟研究[D];河海大学;2007年
9 雷群华;考虑地基防渗墙弹塑性的土石坝三维有限元分析[D];河海大学;2006年
10 邓明基;东平湖围坝塑性混凝土防渗墙性能研究[D];清华大学;2005年
,本文编号:2114252
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2114252.html