海洋附着生物对硫铝酸盐水泥混凝土表面结构的影响研究
发布时间:2018-07-12 07:58
本文选题:藤壶 + 附着 ; 参考:《济南大学》2014年硕士论文
【摘要】:随着硫铝酸盐水泥混凝土在海洋工程中的应用的日益增多,发现海洋环境下的硫铝酸盐水泥混凝土表层常附着有大量的海洋附着生物,这些附着生物中,藤壶是最强的优势群种。研究发现海洋生物的附着对海洋工程产生一定的影响,但影响结果及作用机理尚未明确,因此本文研究以藤壶为主要的海洋附着生物,研究其附着之后对硫铝酸盐水泥混凝土表面结构及表面理化性能的影响,同时对藤壶附着之后混凝土的力学性能、表层抗渗性能、抗碳化性能进行了研究。研究结果表明: (1)酵母粉、蔗糖、蛋白胨等营养物质对藤壶的附着影响不大,而海洋自然环境对藤壶的附着起着重要作用,生长繁殖的适宜温度为20℃~28℃,海水pH为7.9~8.4。藤壶可以在海洋环境中的大部分基材上附着,不同附着基材表面藤壶的底盘厚度不同,混凝土、石头、红砖、空心砖表层底盘厚度分别约为400μm、300μm、100μm、100μm。其中石头和混凝土的底盘较为致密,而红砖和空心砖的底盘较为疏松。通过红外光谱分析,藤壶胶体主要官能团为胺基(-NH2)、羰基(C=O)以及-C-N、-(CH2)n,n≥4。 (2)藤壶幼虫较易附着在高表面能基材上,实验得到硫铝酸盐水泥未水化和水化6h的表面能分别为51.46mJ·m-2和58.26mJ·m-2,随水化进行其表面能增大。普通硅酸盐水泥未水化和水化6h的表面能分别为49.37mJ·m-2和56.32mJ·m-2。水化时间相同时,硫铝酸盐水泥的表面能高于普通硅酸盐水泥的表面能。 (3)藤壶的附着在混凝土表层形成一层生物膜层,生物膜层除上壳体外,还包括藤壶底盘以及藤壶胶体。藤壶底盘主要元素为C、O、Ca,结构十分致密,是一层天然的钙质层。藤壶胶体层厚度为10μm~20μm,主要元素为C、N、O,结构疏松,可将藤壶紧密粘附在混凝土表层,同时胶体物质可渗入混凝土表层孔洞中。藤壶附着之后C30和C50混凝土表层孔隙率分别降低4.9%和8.6%,表层孔的中值孔径分别降低23.4%和80.1%。C30混凝土经模拟海水侵蚀后孔径在100μm~200μm和50μm~100μm的孔体积分别为21.52×10-3ml和3.69×10-3ml,经天然海水侵蚀后分别为2.4×10-3ml和20.05×10-3ml,天然海水中的混凝土试块表面小孔体积增加,孔径更加细化。 (4)硫铝酸盐水泥混凝土试块经过六个月侵蚀之后,C30混凝土经淡水、模拟海水、天然海水侵蚀后的强度分别为39.3MPa、41.6MPa、42.3MPa,C50混凝土经淡水、模拟海水、天然海水侵蚀后的强度分别为51.8MPa、56.5MPa、58.3MPa。藤壶附着对混凝土的力学性能影响不明显。C30和C50强度等级混凝土的渗透时间分别为淡水263s、1066s,模拟海水922s、1821s,天然海水958s、1934s,,藤壶附着后对表层抗渗性分别提高4%和6.2%。C30硫铝酸盐水泥混凝土,天然海水侵蚀的试块7d碳化深度为1.6mm,28d时为5.6mm,增长250.0%;模拟海水侵蚀的试块碳化7d时深度为3.4mm,28d时为8.3mm,增长144.1%;藤壶附着之后7d碳化深度降低52.9%,28d降低12.5%。藤壶附着可提高硫铝酸盐水泥混凝土的抗碳化性能,且对早期抗碳化性提高较大。
[Abstract]:With the increasing application of sulphoaluminate cement concrete in marine engineering, it is found that there are a lot of marine attachments attached to the surface of sulphoaluminate cement concrete under marine environment, and the barnacles are the most dominant species in these attachments. The effect and mechanism of the effect are not clear. Therefore, this paper studies the effect of the attachment of barnacles on the surface structure and the surface physical and chemical properties of the sulphoaluminate cement concrete. At the same time, the mechanical properties of the concrete, the surface resistance and the carbonization resistance after the attachment of the barnacle are studied. The results show that:
(1) yeast, sucrose, peptone and other nutrients have little influence on the attachment of barnacles, and the marine natural environment plays an important role in the attachment of barnacles. The suitable temperature for growth and reproduction is 20 ~28 C, and the pH of the sea water is 7.9 ~ 8.4. in most of the base material in the marine environment, and the thickness of the base of the barnacle on the surface of the substrate is different. The thickness of the surface of concrete, stone, red brick and hollow brick is about 400 mu m, 300 mu m, 100 mu m, 100 m., and the chassis of stone and concrete is more compact, and the chassis of red brick and hollow brick is loose. The main functional groups of barnacle colloid are amino group (-NH2), carbonyl (C=O) and -C-N, CH2 n, n > 4. by infrared spectroscopy.
(2) the barnacle larvae are more easily attached to the substrate of high surface energy. The surface energy of the unhydrated and hydrated 6h of the aluminate cement is 51.46mJ m-2 and 58.26mJ m-2 respectively. The surface energy of the normal Portland cement without hydration and hydration 6h is the same when the hydration time of 49.37mJ. M-2 and 56.32mJ m-2. is the same, respectively. The surface energy of sulphoaluminate cement is higher than that of ordinary portland cement.
(3) the barnacle is attached to the surface of the concrete to form a layer of biological membrane. The biofilm layer is in addition to the shell and includes the barnacle chassis and the barnacle colloid. The main elements of the barnacle are C, O, Ca, and the structure is very dense. It is a natural calcareous layer. The thickness of the barnacle colloid layer is 10 m ~20 mu m, the main elements are C, N, O, loose structure, and the tight structure of the barnacle. The surface of the concrete can be infiltrated into the surface of the concrete surface, and the porosity of the C30 and C50 concrete is reduced by 4.9% and 8.6% respectively after the barnacle is attached. The median pore size of the surface pores is reduced by 23.4% and the pore volume of the 80.1%.C30 concrete after the simulated seawater erosion is 100 mu m~200 m and 50 mu m~100 mu m respectively. 52 * 10-3ml and 3.69 x 10-3ml are 2.4 * 10-3ml and 20.05 x 10-3ml after natural seawater erosion. The pore volume of the concrete specimen in natural seawater increases and the pore size is more refined.
(4) after six months of erosion of sulphoaluminate cement concrete test block, C30 concrete is simulated seawater through fresh water. The strength of natural seawater eroded by natural seawater is 39.3MPa, 41.6MPa, 42.3MPa, C50 concrete through fresh water, simulated seawater, and the strength after natural seawater erosion is 51.8MPa, 56.5MPa, 58.3MPa. barnacle adhered to the mechanical properties of concrete. The infiltration time of concrete with no obvious influence on.C30 and C50 strength grade is fresh water 263s, 1066s, simulated seawater 922s, 1821s, 958s, 1934s, and natural seawater 958s, 1934s, the surface impermeability of the barnacle is increased by 4% and 6.2%.C30 sulphoaluminate cement concrete respectively. The 7d carbonization depth of natural seawater erosion is 1.6mm, and the 28d is 250%. The depth of carbonized 7d for simulated seawater erosion was 3.4mm, 28d was 8.3mm, increased by 144.1%, and 7d carbonization depth decreased by 52.9% after the barnacle adhered, and 28d reduction of 12.5%. barnacle adhesion could improve the carbonization resistance of sulphoaluminate cement concrete and increased the early carbonization resistance.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TV431
【参考文献】
相关期刊论文 前10条
1 张明明;赵文;于世超;;我国海洋污损生物的研究概况[J];水产科学;2008年10期
2 崔正刚,B.P.Binks,J.H.Clint;薄层毛细渗透技术测定多孔性固体颗粒的表面能成分[J];日用化学工业;2004年04期
3 李倩;宋锡瑾;裴宁;王杰;;水镁石粉体表面改性及表面能测算[J];材料科学与工程学报;2011年05期
4 史航;王鲁民;;海洋污损生物藤壶的附着机理及防除[J];广东农业科学;2006年06期
5 季辉;徐永利;;海工钢筋混凝土结构防腐蚀技术研究现状及应用[J];公路;2009年09期
6 宋永香,王志政;海洋生物及其粘附机理——微生物、小型海藻、巨型海藻、贻贝[J];中国胶粘剂;2002年04期
7 宋永香,王志政;海洋生物及其粘附机理——藤壶、帽贝、海葵、管栖蠕虫[J];中国胶粘剂;2003年04期
8 王剑云;钱春香;王瑞兴;成亮;;菌液浸泡法在水泥基材料表面覆膜研究[J];硅酸盐学报;2009年07期
9 丁自强;海工混凝土结构的防腐蚀[J];华北水利水电学院学报;2000年01期
10 边蕴静;低表面能防污涂料的最新进展[J];化工新型材料;2000年11期
本文编号:2116496
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2116496.html