高碾压混凝土拱坝地震破坏机理模型试验研究
[Abstract]:With the vigorous development of water conservancy in China, a large number of arch dams have been or are being built, and the seismic safety of arch dams is particularly important. Under strong earthquakes, the failure mechanism of high RCC arch dam is extremely complex and many factors affect it. Although numerical simulation has become the main way to study the mechanism of high dam strong earthquake damage, the dynamic model The test is still an important method, and the code for seismic design of hydraulic engineering of Hydropower Engineering (NB 35047-2015) stipulates that the dynamic model test should be carried out when the design of a class a dam with a degree of VIII and above and higher than 150m. The imitation real material, the model technology and the testing method of the dynamic model test of the high dam are still not enough. It is perfect, especially for the nonlinear behavior of arch dam structure joint under strong earthquake, the influence of the horizontal weak layer, the interaction of dam and reservoir water, and so on. In this paper, a series of experimental studies are carried out to explore the structural seams, the horizontal weak layers and the dam bank interaction under the strong earthquake of the arch dam, including the model material test. Research, damage monitoring technique, vibration table failure test and numerical simulation. The main contents are as follows: (1) a high density, low elastic modulus, low tensile strength and good brittleness of high dam model materials are developed. A series of tests on the constitutive relation of the uniaxial tension and compression of the model materials under different strain rates are carried out. The stress-strain curve equation of the model material under dynamic action, and the relationship between the ultimate strength, the strain of the peak stress, the modulus of elasticity, the modulus of elasticity, the Poisson's ratio, the energy absorption capacity and the strain rate are obtained, and the correlation between the strain rate and the prototype material is compared, which provides the material for the failure mechanism of the arch dam in the dynamic force model test of the high dam. Material parameters are provided and material parameters are provided for Numerical Research (second chapter). (2) a damage monitoring method for dynamic model test of high arch dam is developed to monitor dynamic stress and structural damage of high dam model. Before the model test, the positive piezoelectric effect is used to calibrate the sensor under the same loading rate. The damage index is defined by the root mean square index, and the effectiveness of the damage monitoring method is verified by pre test. On this basis, the distributed sensor network is embedded into the high dam model and the path time history damage index matrix is constructed to characterize the damage location and damage process of the model, and the feasibility of this method is verified by the model test. It is complementary to the traditional high dam model testing method, to improve the test precision of dynamic model test of arch dam and to reveal the law of damage and damage of the model (third chapter). (3) on the basis of the research of the model material research and damage monitoring technology, the structural seams and the horizontal weak layers are studied step by step through the failure test of the dynamic model of the high dam. The mechanism of earthquake damage and the effect of failure mode. The model is based on the elastic force gravity similarity criterion, and the sensitivity of the original model material mechanical characteristic is considered when the similarity relation is designed. The model transverse joint simulation considers the keyway, the induced seam simulation is based on the fracture mechanics theory, and the dynamic splitting test of the model material containing the weak layer is carried out at the same time. The results show that the structural joints can release the internal stress of the dam in the earthquake and improve the overall overload capacity of the arch dam. The existence of the weak layer does not significantly reduce the overloading capacity of the whole dam, and the main effect is the failure mode after the arch constraint is weakened and the beam position enters the cantilever beam loading mode. The test results enrich the dynamic model test of the high arch dam. The research content of the study provides a scientific basis for optimizing the seismic design of arch dams and evaluating the seismic safety of arch dams (fourth, fifth chapters). (4) using natural water to simulate the reservoir water, the dynamic response and failure modes of arch dams under the action of reservoir water are studied by using the dynamic model test method of arch dam. The present reservoir water makes the arch dam in preloading state, giving full play to the stress characteristics of the arch dam, which is more beneficial to the dam safety than that of the empty reservoir. Considering the similar relationship requirements and the actual conditions, the influence of the water density of the model reservoir on the test results is studied by the numerical analysis method. The nonlinear constitutive model of the numerical model dam is selected to select the concrete damage force. The material parameters are obtained by the mechanical performance test. The cohesion unit is simulated by the cohesive unit, and the numerical model is checked by the results of the empty reservoir test. The numerical results show that the water density of the different reservoirs is mainly influenced by the distribution of the main stress in the upper reaches of the dam, and the effect on the failure mode can be ignored. When using liquids that satisfy similar relations, natural water simulation is an effective method (the sixth chapter).
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TV642.4
【相似文献】
相关期刊论文 前10条
1 ;最高的碾压混凝土拱坝[J];水利科技;2000年03期
2 黄达海;碾压混凝土拱坝的发展[J];水利水电科技进展;2000年03期
3 李春敏,李毓林;析我国碾压混凝土拱坝技术[J];水利水电技术;2001年11期
4 刘光廷,李鹏辉,谢树南,张富德;碾压混凝土拱坝的铰结拱研究[J];水利学报;2002年06期
5 韩晓凤,张仲卿,张伟;高碾压混凝土拱坝超载的有限元分析[J];红水河;2002年03期
6 吴劼高;当前世界上已建及在建的碾压混凝土拱坝[J];河海大学学报(自然科学版);2002年04期
7 沈崇刚;沙牌碾压混凝土拱坝——一座里程碑的工程[J];水电站设计;2003年04期
8 罗洪波,崔进;大花水水电站碾压混凝土拱坝设计[J];贵州水力发电;2005年01期
9 韦天琴,刘海成,宋加国;碾压混凝土拱坝开裂研究的进展[J];水力发电;2005年03期
10 陈秋华;;由成都勘测设计研究院完成的《碾压混凝土拱坝筑坝配套技术研究》荣获2005年国家科技进步二等奖[J];水电站设计;2006年02期
相关会议论文 前10条
1 王乐伯;陈宗卿;;普定碾压混凝土拱坝筑坝新技术研究[A];96’碾压混凝土筑坝技术交流会论文集[C];1996年
2 陈秋华;;碾压混凝土拱坝成缝新技术[A];中国水力发电工程学会2003年度学术年会碾压混凝土筑坝技术交流论文汇编[C];2003年
3 罗洪波;崔进;;大花水水电站碾压混凝土拱坝设计[A];纪念贵州省水力发电工程学会成立20周年论文选集[C];2005年
4 李春敏;李毓林;;析我国碾压混凝土拱坝技术[A];碾压混凝土筑坝技术交流论文汇编[C];2003年
5 陈秋华;;碾压混凝土拱坝成缝新技术[A];碾压混凝土筑坝技术交流论文汇编[C];2003年
6 李春敏;李毓林;;析我国碾压混凝土拱坝技术[A];中国水力发电工程学会2003年度学术年会碾压混凝土筑坝技术交流论文汇编[C];2003年
7 刘炎生;黄巍;;沙牌碾压混凝土拱坝施工新技术、新成果[A];中国水力发电工程学会2003年度学术年会碾压混凝土筑坝技术交流论文汇编[C];2003年
8 李春敏;;我国碾压混凝土拱坝发展概述[A];2004年全国碾压混凝土坝筑坝技术交流会论文集[C];2004年
9 马思烈;罗健;;沙坝水电站碾压混凝土拱坝设计[A];2004年全国碾压混凝土坝筑坝技术交流会论文集[C];2004年
10 罗洪波;崔进;;大花水碾压混凝土拱坝设计[A];2004年全国碾压混凝土坝筑坝技术交流会论文集[C];2004年
相关重要报纸文章 前8条
1 王启翔;汇集25项新技术 沙牌碾压混凝土拱坝 最高拱坝上演创新秀[N];中国水利报;2005年
2 记者 朱彤 通讯员 刘疆;最高碾压混凝土拱坝在新疆建成[N];科技日报;2000年
3 汤洪洁;白莲崖水库解决高碾压混凝土拱坝施工期温度应力问题[N];中国水利报;2008年
4 通讯员 庞卡;中国水电建设集团两项技术研究获大奖[N];中国电力报;2006年
5 陈改新;碾压混凝土拱坝接缝重复灌浆技术[N];中国水利报;2005年
6 中国水利学会水工结构专业委员会;结构工程技术成果丰硕[N];中国水利报;2003年
7 实习记者 吕露英;两个世界第一 20年集体攻关[N];新清华;2010年
8 本报记者 江东洲;生命不息 追求不止[N];科技日报;2007年
相关博士学位论文 前3条
1 张宇;高碾压混凝土拱坝地震破坏机理模型试验研究[D];大连理工大学;2016年
2 郑家祥;高碾压混凝土拱坝施工过程仿真与优化研究[D];天津大学;2007年
3 刘海成;碾压混凝土拱坝温度应力与诱导缝开裂分析[D];大连理工大学;2004年
相关硕士学位论文 前10条
1 苑鑫;沙牌碾压混凝土拱坝损伤破坏的风险分析[D];大连理工大学;2016年
2 王海青;碾压混凝土拱坝温度应力仿真分析[D];河海大学;2006年
3 张旭辉;碾压层缝对碾压混凝土拱坝承载能力的影响研究[D];广西大学;2006年
4 夏雨;碾压混凝土拱坝施工仿真分析方法研究[D];广西大学;2006年
5 纪新帅;碾压混凝土拱坝施工期温度场应力场仿真分析[D];西北农林科技大学;2012年
6 李红;李家河碾压混凝土拱坝温度应力仿真及温控防裂研究[D];西安理工大学;2010年
7 王永新;高碾压混凝土拱坝仿真分析与优化研究[D];广西大学;2005年
8 刘代平;高碾压混凝土拱坝仿真分析方法研究[D];广西大学;2006年
9 张晓飞;碾压混凝土拱坝温度应力场仿真分析[D];西安理工大学;2004年
10 刘智;碾压混凝土拱坝有限元仿真分析及防裂措施[D];南昌大学;2012年
,本文编号:2152192
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2152192.html