基于实测地应力的丹巴水电站深埋软岩引水隧道变形破坏规律及稳定性研究
发布时间:2018-08-26 07:59
【摘要】:鉴于地应力对地下工程围岩稳定性的重要影响,以深埋软岩隧道为背景,在现场地应力测试基础上,利用FLAC3D数值模拟软件分析隧道开挖围岩应力、位移、塑性区分布规律及稳定性。结果表明,隧道埋深较小时,最大主应力为16.81~16.83MPa,属中等地应力区,方向为N30°~36°W,与隧道轴线夹角较小;埋深较大时,最大主应力为27.56~31.22 MPa,属高地应力区,方向基本偏转90°,与隧道轴线夹角较大。隧道开挖应力最大为50 MPa、变形量峰值为36.88mm、塑性区最大深度为3.3 m,围岩整体稳定性差。现场变形量、松动圈及破坏特征监测结果验证了数模结果的合理性。研究成果可为类似工程提供参考。
[Abstract]:In view of the important influence of in-situ stress on the stability of surrounding rock in underground engineering, the stress and displacement of surrounding rock in tunnel excavation are analyzed by using FLAC3D numerical simulation software on the basis of in-situ stress test. Distribution and stability of plastic zone. The results show that the maximum principal stress of the tunnel is 16.81 脳 16.83MPa, which belongs to the medium ground stress area, and the direction is N30 掳/ 36 掳W, and the angle between the tunnel axis and the tunnel axis is small, and the maximum principal stress of 27.560.31.22 MPa, belongs to the high ground stress area when the buried depth is large. The direction basically deflects 90 掳, and the angle with the tunnel axis is bigger. The maximum stress of tunnel excavation is 36.88 mm for 50 MPa, deformation and the maximum depth of plastic zone is 3.3 mm. The overall stability of surrounding rock is poor. The monitoring results of field deformation, loose ring and failure characteristics verify the rationality of the numerical simulation results. The research results can provide reference for similar projects.
【作者单位】: 山西交通职业技术学院工程管理系;
【分类号】:TV554
本文编号:2204228
[Abstract]:In view of the important influence of in-situ stress on the stability of surrounding rock in underground engineering, the stress and displacement of surrounding rock in tunnel excavation are analyzed by using FLAC3D numerical simulation software on the basis of in-situ stress test. Distribution and stability of plastic zone. The results show that the maximum principal stress of the tunnel is 16.81 脳 16.83MPa, which belongs to the medium ground stress area, and the direction is N30 掳/ 36 掳W, and the angle between the tunnel axis and the tunnel axis is small, and the maximum principal stress of 27.560.31.22 MPa, belongs to the high ground stress area when the buried depth is large. The direction basically deflects 90 掳, and the angle with the tunnel axis is bigger. The maximum stress of tunnel excavation is 36.88 mm for 50 MPa, deformation and the maximum depth of plastic zone is 3.3 mm. The overall stability of surrounding rock is poor. The monitoring results of field deformation, loose ring and failure characteristics verify the rationality of the numerical simulation results. The research results can provide reference for similar projects.
【作者单位】: 山西交通职业技术学院工程管理系;
【分类号】:TV554
【相似文献】
相关期刊论文 前5条
1 肖东佑;凌晨阳;;隧硐围岩稳定性超前预测方法浅析[J];工程地质计算机应用;2011年01期
2 李芬;孟刚;;模糊综合评判法在围岩稳定性分类中的应用[J];武汉大学学报(工学版);2011年06期
3 李通文;关于用围岩稳定系数评价地下洞室围岩稳定性的探讨[J];水力发电;1989年02期
4 牛岩;张继勋;任旭华;;断层产状对围岩稳定性影响的敏感度分析[J];三峡大学学报(自然科学版);2013年05期
5 赵震英;复杂地层地下厂房围岩稳定性研究[J];武汉水利电力学院学报;1990年04期
相关硕士学位论文 前3条
1 吴建兵;软岩隧道快速掘进中变形预测及支护方案优化的研究[D];武汉理工大学;2003年
2 满志伟;深埋输水隧洞TBM开挖过程中围岩稳定性数值分析[D];浙江工业大学;2014年
3 蔡广奎;围岩稳定性分类的BP网络模型研究[D];河海大学;2001年
,本文编号:2204228
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2204228.html