当前位置:主页 > 科技论文 > 水利工程论文 >

基于贝叶斯仿真模型的云南省调水条件丰枯遭遇分析

发布时间:2018-08-30 14:23
【摘要】:航道的通航条件按照通航时间的长短划分可分为常年通航航道和季节通航航道。常年通航的航道,即为船舶全年提供通航的航道;季节通航的航道,即只能在特定时间(如非封冻季节)或水位期(如中洪水期或中枯水期)内通航的航道。云南省由于地形和水资源空间分布不均匀,受各种因素的限制,导致内河航运发展相对落后,未能得到充分发挥内河航运的潜力。本文对云南全省和六大水系降水径流进行了趋势性分析及周期性分析。根据水资源量的分布特征,划分潜在的水源区和受水区,采用统计方法对水源区和各受水区进行丰枯遭遇分析,并利用贝叶斯仿真模型模拟设定情景下水源区与各受水区的丰枯组合状态,计算在此情景下对调水有利和不利的风险概率,为内河航运管理部门建立水系连通提供依据和参考。主要研究内容及结论如下:(1)采用Mann-Kendall秩次相关检验法和五点滑动平均法分析了云南省全省和六大水系的降水及径流特征、变化趋势。研究得出云南全省的年降水量和径流量有减小的趋势,但减小的趋势并不显著。六大流域年降水都有下降趋势,其中红河流域和珠江流域年降水量有明显的减小趋势,澜沧江流域、怒江流域、伊洛瓦底江流域、长江流域的年降水量减小趋势并不显著;而六大流域的年径流量均呈下降趋势,且下降趋势均不显著。(2)采用小波分析方法对云南省全省的降水及径流进行了周期性分析,得到了全省和六大流域降水及径流的主周期和次周期。对于云南省全省,降水存在着23年和30年大尺度的周期过程,主周期为30年;径流存在着23年的周期过程。对于六大水系,红河流域、澜沧江流域降水存在着23年和30年大尺度周期,主周期为30年;怒江流域、伊洛瓦底江流域降水存在着29年大尺度周期;长江流域、珠江流域降水存在着23年和30年的大尺度周期;主周期为23年。红河流域、澜沧江流域、长江流域、珠江流域径流存在着23年的大尺度周期;怒江流域、伊洛瓦底江流域径流存在着29年大尺度周期。(3)采用统计方法分析了潜在水源区和受水区丰枯异步、丰枯同步的概率,滇西北、滇西、滇南作为滇中地区的三个水源区,滇西北水源区和滇中受水区之间丰枯异步性频率最大,而滇西水源区和滇中受水区之间调水有利频率最大。滇中受水区之间丰枯遭遇分析可以发现相隔较远的两个受水区之间丰枯异步频率较大,有利于调水;相邻两个受水区之间丰枯异步频率较小,不利于调水。(4)建立了贝叶斯仿真模型,分析了基于历史数据和假定不同情境条件下的调水风险,阐述了三大源区与三大受水区之间复杂的内在联系,直观定量地反映水源区与受水区之间丰枯遭遇概率变化规律,得出了不同水源区和受水区的丰水年、平水年、枯水年的概率情况,以及调水有利和调水不利的频率。
[Abstract]:The navigable conditions can be divided into perennial navigable channel and seasonal navigable channel according to the length of navigation time. A channel for navigation all year round, that is, a channel that provides navigation for ships throughout the year, or a channel that is navigable only at a particular time (such as during a non-frozen season) or in a period of water level (such as a mid-flood period or a mid-dry season). Due to the uneven distribution of topography and water resources, and limited by various factors, inland water shipping development in Yunnan Province is relatively backward, and the potential of inland water shipping has not been fully developed. In this paper, the trend and periodicity of precipitation runoff in Yunnan Province and six major water systems are analyzed. According to the distribution characteristics of water resources, the potential water source area and the water receiving area are divided, and the bumping and withering encounter of the water source area and the water receiving area are analyzed by statistical method. The Bayesian simulation model is used to simulate the combination states of water source and each water area in the given scenario, and the risk probability of favorable or unfavorable water transfer in this scenario is calculated, which provides the basis and reference for the inland river shipping management department to establish the water system connection. The main contents and conclusions are as follows: (1) the characteristics and trends of precipitation and runoff in Yunnan Province and six major water systems were analyzed by Mann-Kendall rank correlation test and five-point moving average method. The results show that the annual precipitation and runoff in Yunnan Province are decreasing, but the decreasing trend is not significant. The annual precipitation in the six major river basins has a downward trend, among which the annual precipitation in the Red River Basin and the Pearl River Basin has a significant decreasing trend, while the annual precipitation in the Lancang River Basin, the Nujiang River Basin, the Irrawaddy River Basin and the Yangtze River Basin is not significant. However, the annual runoff of the six major watersheds shows a decreasing trend, and the decreasing trend is not significant. (2) the precipitation and runoff of Yunnan Province are analyzed periodically by using wavelet analysis method. The main and secondary periods of precipitation and runoff in the whole province and six major watersheds have been obtained. For Yunnan Province, there are 23 years and 30 years of large-scale periodic processes of precipitation, the main period is 30 years, and runoff exists 23 years of cycle process. For the six major water systems, the red river basin, the Lancang river basin and the Lancang river basin precipitation has 23 years and 30 years large scale period, the main period is 30 years, the Nujiang river basin, the Ilowaddy river basin precipitation has 29 years large scale period, the Yangtze river basin, The precipitation in the Pearl River basin has a large scale period of 23 years and 30 years, and the main period is 23 years. The runoff in the Red River Basin, Lancang River Basin, Yangtze River Basin and Pearl River Basin has a large scale cycle of 23 years. The runoff of the Irrawaddy River basin has a large scale period of 29 years. (3) the probability of synchronism between the potential water source region and the water receiving area is analyzed by statistical method. The northwest, western and southern Yunnan are the three water source regions in the middle of Yunnan. The asynchronous frequency between the source region of northwest Yunnan and the water receiving area of central Yunnan is the largest, while the favorable frequency of water transfer between the source region of western Yunnan and the receiving area of central Yunnan is the largest. From the analysis of the occurrence of abundant and withered water between the two water-receiving areas in central Yunnan, it can be found that the asynchronous frequency between the two water-receiving areas is higher, which is favorable to water transfer, and the asynchronous frequency between the two adjacent water-receiving areas is relatively small. (4) the Bayesian simulation model is established, the risk of water transfer based on historical data and different scenarios is analyzed, and the complex internal relations between the three major source areas and the three major water receiving areas are expounded. The probability change law of abundant and dry encounter between source region and water receiving area is reflected intuitively and quantitatively, and the probability of abundant water year, average water year, dry water year and the frequency of favorable and unfavorable water transfer are obtained in different water source areas and water receiving areas.
【学位授予单位】:华北水利水电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TV68;TV213.4

【参考文献】

相关期刊论文 前10条

1 曹建荣;于洪军;刘衍君;徐兴永;;黄河上游水文周期成分和突变特征的小波分析[J];人民黄河;2011年03期

2 闫宝宏;;基于小波分析的梧桐河径流深多时间尺度特征分析[J];黑龙江水利科技;2010年06期

3 陆莹;李启明;周志鹏;;基于模糊贝叶斯网络的地铁运营安全风险预测[J];东南大学学报(自然科学版);2010年05期

4 孟凡香;徐淑琴;李天霄;;小波分析方法在月降水量多时间尺度分析中的应用[J];灌溉排水学报;2009年06期

5 周忠宝;马超群;周经伦;;基于贝叶斯网络的事故序列分析[J];哈尔滨工业大学学报;2009年09期

6 谷德军;王东晓;纪忠萍;郑彬;;墨西哥帽小波变换的影响域和计算方案新探讨[J];应用气象学报;2009年01期

7 张兵利;裴亚辉;;贝叶斯网络模型概述[J];电脑与信息技术;2008年05期

8 国德峰;汪更生;宋毅;;一种基于贝叶斯网络的匹配引擎设计[J];计算机工程;2008年17期

9 周忠宝;马超群;周经伦;董豆豆;;基于动态贝叶斯网络的动态故障树分析[J];系统工程理论与实践;2008年02期

10 邢贞相;芮孝芳;崔海燕;余美;;基于AM-MCMC算法的贝叶斯概率洪水预报模型[J];水利学报;2007年12期

相关博士学位论文 前1条

1 周忠宝;基于贝叶斯网络的概率安全评估方法及应用研究[D];国防科学技术大学;2006年

相关硕士学位论文 前1条

1 郭慧芳;基于小波分析的径流中长期预报模型研究[D];郑州大学;2007年



本文编号:2213340

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2213340.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ae88f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com