基于Spark的粒子群算法并行编程及其在水库调度中的应用
[Abstract]:Because of the huge amount of water resources in Heihe River Basin and the complex data relationship, it is difficult to apply conventional technology to optimal dispatching. In this paper, aiming at the problem of water resources scheduling in Heihe River Basin, big data processing and evolutionary computing techniques are applied to solve the problem, and a parallel particle swarm optimization (PSO) algorithm is proposed based on big data computational framework (Spark). A multi-objective optimal dispatching system for reservoirs in Heihe River Basin is developed. In the course of the research and development, the author analyzes the characteristics of the water resources optimal dispatching system in Heihe River Basin, transforms the multiple objectives into a single target, and obtains the solution model of the problem. Then the parallel algorithm programming model, the particle swarm optimization algorithm and its parallelization strategy are studied, and the parallelization method of particle swarm optimization algorithm based on Spark big data computing framework is also studied. On the basis of theoretical and technical research, big data support platform is built on the basis of Hadoop2.7.1,Sparkl.5.2,Spark on Yarn software, and the acquired water resources data in Heihe River Basin is stored in the distributed file system (HDFS) of the platform. Then under the Ubuntu Linux operating system environment and the Spark platform, the parallel program of multi-objective optimal operation of reservoir group based on particle swarm optimization algorithm is developed by using Scala language, and big data of reservoir dispatching can be processed. Multiobjective optimal dispatching system for reservoir groups with high speed operation optimization program. The data loading, program running and result querying of this scheduling system are all carried out under the Ubuntu Linux operating system and Spark platform, interface. It is very difficult for the common users who are not familiar with the running mechanism of Spark. In order to solve this problem, we have also developed an application platform of multi-objective optimal dispatching system for reservoir groups, which realizes big data's uploading, downloading, deleting and querying. As well as the Spark big data platform to handle the application task submission run and SQL query and other functions. The research and development of this subject will play a positive role in promoting the efficient operation of water resources optimal dispatching system, and it will also have a good reference value for the development and application of big data parallel programming based on Spark platform.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;TV697.1
【参考文献】
相关期刊论文 前9条
1 刘心愿;朱勇辉;郭小虎;渠庚;;水库多目标优化调度技术比较研究[J];长江科学院院报;2015年07期
2 彭安帮;彭勇;周惠成;;跨流域调水条件下水库群联合调度图的多核并行计算研究[J];水利学报;2014年11期
3 王卫锋;田亮;;基于改进量子粒子群的分布式并行计算框架设计[J];计算机测量与控制;2014年06期
4 蔡勇;李光耀;王琥;;基于CUDA的并行粒子群优化算法的设计与实现[J];计算机应用研究;2013年08期
5 周云斌;章旭东;;粒子群算法并行化方法研究[J];科技创新导报;2012年29期
6 职为梅;王芳;范明;杨勇;;并行环境下的同步异步PSO算法[J];计算机技术与发展;2009年03期
7 蒋作;高毅;;关于串行程序并行化[J];云南民族大学学报(自然科学版);2007年03期
8 鲍卫锋;黄介生;杨芳;谢华;赵微;;基于多目标动态规划模型的水库优化调度研究[J];西安理工大学学报;2005年04期
9 罗昕,黄仲伟,,李莲治;一种将串行程序划分成并行任务的方法[J];哈尔滨工业大学学报;1995年05期
相关会议论文 前1条
1 张蕾;陈月辉;杨波;;基于并行PSO的神经网络优化算法的研究[A];2005年全国理论计算机科学学术年会论文集[C];2005年
相关博士学位论文 前2条
1 骆涛;面向大数据处理的并行计算模型及性能优化[D];中国科学技术大学;2015年
2 王赢;梯级水库群优化调度方法研究与系统实现[D];华中科技大学;2012年
相关硕士学位论文 前10条
1 郑凤飞;基于Spark的并行推荐算法的研究与实现[D];西南交通大学;2016年
2 陈名辉;基于YARN和Spark框架的数据挖掘算法并行研究[D];湖南师范大学;2016年
3 郑伟;Spark下MPI/GPU并行计算处理机制的研究[D];中国海洋大学;2015年
4 杨志伟;基于Spark平台推荐系统研究[D];中国科学技术大学;2015年
5 余征;基于Hadoop的人脸图像识别并行处理方法研究与实现[D];西南交通大学;2015年
6 王韬;基于Spark的聚类集成系统研究与设计[D];西南交通大学;2015年
7 李文栋;基于Spark的大数据挖掘技术的研究与实现[D];山东大学;2015年
8 梁彦;基于分布式平台Spark和YARN的数据挖掘算法的并行化研究[D];中山大学;2014年
9 邱荣财;基于Spark平台的CURE算法并行化设计与应用[D];华南理工大学;2014年
10 唐振坤;基于Spark的机器学习平台设计与实现[D];厦门大学;2014年
本文编号:2299088
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2299088.html