双超产流模型参数敏感性分析与率定
[Abstract]:With the development of flood forecast science, the hydrological model has been widely used to solve the problems of social and human development, including hydrology, water resources, environment and ecology. The data of the rain and flood in the wet area of the south is rich, and more work can be done in the study of the hydrological model of the river basin, and the calculation method is also mature. However, for the semi-arid area, which is 52% of the territory of our country, the work of the hydrological model is less, and the use of the hydrological model in the basin is a problem both at home and abroad in the semi-arid area. The double supermodel is especially suitable for semi-humid and semi-arid areas, and should be given full attention as the first choice model of the flood forecast. At the present stage, the sensitivity and the rate of the double supermodel parameters are poor, and the accurate model information can not be provided for all levels of government and flood control departments. it is difficult to meet the demand of the flood forecast parameter rate. In this paper, a double super-production flow model is used as the research object, the sensitivity analysis of the model parameters is carried out, the important influence parameters of the output response of the model are identified, the blindness in the process of determining the model parameter rate is reduced, and the system for determining the flood classification parameter rate of the small watershed in Shanxi Province is established, and the reliability and the prediction precision of the model operation are improved. In this paper, the two-supermodel parameter sensitivity analysis of the representative field flood in each basin is selected as the object of the study on the control of the basin as the study object in Yulin, Shangjing and Lou. The sensitivity and correlation of the two supermodel parameters in different river basins, different grades of flood and multiple target functions are obtained firstly, and the comprehensive sensitivity coefficient of the model parameters is determined based on the coefficient of variation method. By using the optimized LH-OAT method, the sensitivity and the correlation of the two supermodel parameters under different river basins, different grade floods and multiple target functions are obtained, and the comprehensive sensitivity coefficient of the model parameters is determined based on the entropy value method. The results of the two methods are compared and analyzed. The results show that: (1) The comprehensive sensitivity of the model parameters is determined by the local analysis method as Srb-0Ks-C, the parameters Sr, Ks, b and {0} are sensitive parameters, and C and K are not sensitive parameters. The comprehensive sensitivity of the model parameters is determined by the global analysis method as the KsbSr-0-IGC, the parameters Sr, Ks and b are sensitive parameters, and the parameter {0} is the sensitive parameter, and the parameter C and the parameter are not sensitive parameters. The results show that the sensitivity and size of the model parameters are different from those of the different research methods. However, for the parameter sensitivity classification, only the sensitivity level of the other parameters is affected by the analysis method, and the other parameter sensitivity grades have good stability. (2) The correlation between the parameters and the objective function is analyzed by the local analysis method and the global analysis method, and the correlation between the sensitivity parameters and the target function Wi and Qmi is clear in different levels of flood and different river basins. The performance is that the parameters' 0, b 'are positively related to Wi and Qmi, and the parameters Sr, Ks are negatively correlated with Wi and Qmi. However, the parameters are not related to all target functions, and when the target function becomes IVF, RE, RSS, PE, the correlation is not clear. Therefore, there is a need to treat different target functions in the actual application, and the regulation of the parameters needs to be treated differently, and it is not all rules to follow. In this paper, the fuzzy ISOD ATA iterative model is used to cluster the historical flood. Since the flood peak flow and the flood volume of the field flood process are the main targets of the flood forecast, the flood peak flow and the total flood volume of the selected historical flood are cluster analysis. The historical flood is divided into three types of flood, medium flood and small flood according to the order of magnitude. Because the flood phenomenon is complicated and changeable, it is difficult to control, and the law of runoff generation is different in different types of flood. In order to reduce the error of forecasting the flood of the whole river basin by a group of hydrological forecasting model parameters, this paper establishes the idea of the classification rate of the parameter of the hydrological forecast model. so as to find the law of the same type of flood runoff and confluence. The classification rate of the model of the hydrological forecast model is as follows: (1) The classification model of the BP neural network is established in this paper, and the type of the basin flood can be accurately determined, and the accuracy of the model is 100% in the sample prediction. (2) The method of the watershed flood classification and forecast in this paper is to increase the qualified rate of the flood forecast from 73% to 82%, and the relative error of the flood volume from 18. 1% to 11. 3%. The qualification rate of the flood peak is also increased from 73% to 82%. The relative error of the flood peak was reduced from 16. 4% to 14. 6%. The whole forecast precision of the study basin is improved, and a reliable basis for studying the real-time dispatching of the river basin is provided. In this paper, the sensitivity classification of the model parameters is only carried out by the traditional perturbation analysis method, and the sensitivity coefficient of the model parameters is not calculated quantitatively, and the comprehensive sensitivity coefficient of the model is analyzed by the weight of the objective function. The sensitivity of the parameters is analyzed in an objective and comprehensive way, and the result is more perfect and reliable. It is of far-reaching significance to the deep understanding of the production flow mechanism of the double supermodel, the process of reducing the model rate and the improvement of the model precision, etc. The BP neural network classification model established in this paper can accurately judge the magnitude of the flood level of the river basin, and is reliable for the classification of the flood in the basin. In addition, the classification of the flood and the result of the identification are affected by the selection of the characteristics of the flood classification.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TV122
【相似文献】
相关期刊论文 前10条
1 董扬帆;敏感性分析在船舶估价中的应用[J];武汉造船;2001年01期
2 章光;朱维申;;参数敏感性分析与试验方案优化[J];岩土力学;1993年01期
3 李欣章,夏侯雪娇;利润敏感性分析[J];青岛建筑工程学院学报;1997年02期
4 李贞,何f ,邬俏钧,闫荣;场地开发的景观与生态敏感性分析——以深圳梧桐山南坡废弃石场为例[J];热带地理;2001年04期
5 何永恒;李进;;项目的敏感性分析[J];交通科技与经济;2012年04期
6 杨家新,public.wh.hb.cn,卢少平;敏感性分析计算方法初探[J];深圳大学学报;2000年01期
7 张曦;;偏微分在项目经济评价敏感性分析中的应用[J];福建建筑;2007年06期
8 李红燕,远巧珍;非线性评估中权重的敏感性分析[J];装甲兵工程学院学报;2005年01期
9 黄霞;谈鹏燕;;敏感性分析在滑坡力学参数选取中的应用[J];重庆交通大学学报(自然科学版);2011年S1期
10 刘国新;;随机敏感性分析探讨[J];武汉工学院学报;1995年04期
相关会议论文 前10条
1 李静;胡志东;田彬;徐海茹;李金;周斌;岳娜;杨华;张志勇;;临床分离念珠菌的分布及敏感性分析[A];中华医学会第七次全国检验医学学术会议资料汇编[C];2008年
2 邢磊;殷志祥;;无站台柱雨棚结构的敏感性分析与安全性评价[A];城市地下空间综合开发技术交流会论文集[C];2013年
3 吴玲;曾宇峰;;敏感性分析中求不确定性因素临界点的一般方法[A];中国运筹学会第六届学术交流会论文集(下卷)[C];2000年
4 许正权;王华清;张中强;;复杂高危系统的失效机制及结构敏感性调控[A];和谐发展与系统工程——中国系统工程学会第十五届年会论文集[C];2008年
5 周国富;杨宗周;;岩溶山区建设用地占用耕地的敏感性分析[A];中国土地资源战略与区域协调发展研究[C];2006年
6 李冬;刘晓晶;杨燕华;;RELAP5程序再淹没现象物理模型的敏感性分析[A];中国核学会核能动力分会2013年学术研讨会论文集[C];2013年
7 杨贤国;陈常铭;;稻田生物群落能流型及敏感性分析[A];青年生态学者论丛(二)昆虫生态学研究[C];1991年
8 谭晓洪;应康玺;沈华;;设备运行保障系数在设备管理应用的研究[A];上海空港(第13辑)[C];2011年
9 张艳梅;江志红;王冀;韩艳凤;;贵州极端降水随平均降水变化的敏感性分析[A];中国气象学会2006年年会“气候变化及其机理和模拟”分会场论文集[C];2006年
10 庄艳美;尹海伟;孔繁花;孙振如;周艳妮;;基于GIS和RS的湖北省生态敏感性分析[A];第十七届中国遥感大会摘要集[C];2010年
相关重要报纸文章 前2条
1 本报记者 应尤佳;油价回涨 航空公司套保浮亏大幅缩小[N];上海证券报;2009年
2 张霓 陈锦新;确定研究角度 界定成本范围[N];医药经济报;2001年
相关博士学位论文 前4条
1 薛亚婷;基于雷达干涉测量技术的不同环境影响因子下兰州市区斜坡灾害识别及敏感性分析研究[D];兰州大学;2015年
2 韩飞;基于可交易路票策略的随机用户均衡模型及系统优化[D];东南大学;2016年
3 李成凯;感应熔覆熔池流动与敏感性参数控制工艺研究[D];中国石油大学(华东);2014年
4 欧阳帅;祁连山排露沟水文动态HBV模型模拟参数检验及敏感性分析[D];北京林业大学;2014年
相关硕士学位论文 前10条
1 何沁波;龙景湖叶绿素a浓度预测模型敏感性分析[D];重庆大学;2015年
2 郭浩;基于EPIC模型的区域水稻作物参数敏感性分析[D];浙江师范大学;2015年
3 张琳琳;汛后落水条件下河岸崩塌的机理分析[D];西北农林科技大学;2015年
4 李耀;敏感性分析概率发生模型的改进[D];湘潭大学;2015年
5 孙鉴锋;北京市适应气候变化信息建模研究[D];北京林业大学;2016年
6 刘源;破冰船的冰阻力估算方法研究[D];华中科技大学;2014年
7 陈戈;尾矿库地下水重金属Cu迁移数值模型的敏感性分析[D];西南交通大学;2016年
8 于诗歌;水力机组广义哈密顿系统结构矩阵元素敏感性分析[D];昆明理工大学;2016年
9 张佳;基于温度示踪的潜流交换动态变化研究[D];长安大学;2016年
10 徐东;代理柴油重整实验及动力学模型研究[D];合肥工业大学;2016年
,本文编号:2318907
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2318907.html