临江岸坡安全监测信息系统开发及监控模型研究
[Abstract]:Bank slope management has played a great role in flood control, irrigation, water supply, shipping, soil and water conservation, economic and environmental benefits, national economic construction and social security. Slope safety monitoring, based on the analysis and processing of time series data produced by monitoring instruments, reveals the working state of bank slope and ensures its safe operation, which plays an important role in bank slope management. In general, in order to fully understand the running state of the bank slope, more monitoring points and monitoring items are arranged on the bank slope, and the spatial distribution of the monitoring points is also relatively wide, which constitutes a complex spatial monitoring system and produces a large number of monitoring data. Based on the above problems, this paper studies and develops the slope safety monitoring information system, and realizes the systematic management of bank slope safety monitoring. Based on GIS platform, the visualization models of riverside bank slope were established by using TIN surface and grid surface, respectively. The grid surface was textured by 3D modeling software Sketchup to make it more intuitionistic. The bank slope monitoring database is constructed to manage rainfall, displacement, osmotic pressure and other monitoring information effectively. Based on the monitoring data, the BP neural network model and the GM (1 ~ 1) model are constructed to reveal the internal displacement and seepage pressure variation law of bank slope under the influence of time, water level and rainfall, and to predict the slope displacement and seepage pressure change trend. The calculation of the model is realized by programming with Visual Basic language. The results show that both the BP neural network model and the GM (1 ~ 1) model can fit and predict the slope displacement and seepage pressure. Based on the Visual Studio platform, the visualization module is constructed. Through the introduction of the TIN model and the grid model, the related functions of bank slope monitoring, visual display and measurement, attribute query and so on are realized. The module of data management and analysis is constructed, and the monitoring data management and the real-time analysis and prediction of monitoring data are realized by establishing the connection with the monitoring database and the external monitoring model program. The example shows that the system can realize the informationization, visualization and systematization of bank slope safety monitoring, which provides the condition for bank slope reinforcement and operation to take timely and effective preventive measures.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TV698.1
【参考文献】
相关期刊论文 前10条
1 白崇宇;黄铭;蔚清;张慧君;;基于Visual Studio平台的大坝安全监测系统构建与实现方法[J];水电能源科学;2013年04期
2 黄铭;肖明虹;;基于SketchUp和ArcGIS的城市3维建模技术研究[J];测绘与空间地理信息;2012年08期
3 郑丰;熊雪强;林颖;王德中;杨涛波;赵奎;;基于灰色理论的某露天矿边坡稳定性预报[J];中国矿山工程;2012年02期
4 高红霞;胡广平;;基于Visual Studio.Net学习用品管理信息系统的设计[J];自动化技术与应用;2012年02期
5 杨华龙;刘金霞;郑斌;;灰色预测GM(1,1)模型的改进及应用[J];数学的实践与认识;2011年23期
6 徐军;吴世强;;基于SKETCHUP的虚拟景观的建立[J];大坝与安全;2009年S1期
7 邓世赞;孙珂;李春静;赵岩岩;;基于ArcGIS Engine的数字校园系统设计与实现[J];华北水利水电学院学报;2009年05期
8 黄铭;刘俊;;海堤渗压监测因果模型基本结构和因子选择[J];上海交通大学学报;2008年11期
9 刘福深;刘耀儒;杨强;;基于差异进化算法的前馈神经网络在大坝变形监测中的应用[J];岩土力学;2006年04期
10 徐伟,李文涛,丁勇敏;清河水库大坝安全监测数据管理及建模分析系统[J];水电自动化与大坝监测;2005年02期
相关博士学位论文 前4条
1 马殿光;内河航道土质岸坡生态治理技术及应用研究[D];天津大学;2013年
2 刘江川;泥石流数学模型构建及危险性评价研究[D];天津大学;2011年
3 冯文凯;库岸公路边坡稳定性风险分析[D];成都理工大学;2005年
4 覃光华;人工神经网络技术及其应用[D];四川大学;2003年
相关硕士学位论文 前10条
1 陈东辉;基于渗流场和应力场耦合作用的岸坡稳定性分析[D];暨南大学;2015年
2 刘琼洁;Google Earth在初中地理教学中的应用研究[D];河南大学;2015年
3 干珍珍;基于Google Earth的武夷山景区三维可视化系统开发[D];福州大学;2014年
4 刘博宇;基于ArcGIS Engine的数字城市系统平台搭建研究[D];吉林大学;2013年
5 刘季;基于GIS的城镇体系布局规划研究[D];湖北大学;2012年
6 李世敏;基于GIS的水资源开发利用评价模型研究[D];成都理工大学;2011年
7 刘天舒;BP神经网络的改进研究及应用[D];东北农业大学;2011年
8 陈可仁;基于GIS的边坡稳定性分析评价系统研究及其应用[D];北方工业大学;2010年
9 刘甘华;神经网络在土石坝渗流监测中的应用[D];合肥工业大学;2010年
10 单楠;基于SketchUp和ArcGIS的三维GIS开发技术研究[D];西南大学;2009年
,本文编号:2343379
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2343379.html