水泵水轮机调节系统稳态与典型暂态过程稳定性分析
[Abstract]:Pumped-storage power station can convert excess electric energy from low load to high-value electric energy during peak period of power grid, at the same time, it also has many functions such as frequency modulation and phase modulation and accident standby, and can also improve the utilization efficiency of wind power, thermal power and nuclear power. It plays a more and more important role in power system. As the core of pumped storage power station, pump turbine regulation system plays an important role in maintaining the safety, stability and economic operation of the power station. In the past, the research on pumped-storage units was mainly focused on pump turbines, and it was rarely incorporated into the framework of the whole governing system, nor could it reveal the mechanism of its dynamic evolution. In this paper, from the point of view of system engineering, differential mathematical modeling and stability analysis of steady state and two typical transient processes of regulating system are carried out, and numerical simulation is carried out by means of bifurcation diagram, time domain diagram and phase trajectory diagram. The correctness of the theoretical results is verified. The main research contents and conclusions are as follows: (1) considering hydraulic friction and elastic water hammer effect of pressure pipeline, the steady state model of pump turbine regulating system is established; The expression of transfer coefficient under pump condition is deduced, and the transfer coefficient under rated condition is calculated with the system parameters of Panjiakou Pumped-storage Power Station. By using the stability theorem and the MATLAB tool, the stability region of the system PID adjustment parameters is calculated, and the correctness of the obtained results is verified by numerical simulation. The effects of hydraulic friction on the stability region of the system are compared and analyzed. The results show that the hydraulic friction is beneficial to maintain the stable operation of the system. At the same time, the variation of several parameters in different stability regions is studied and given. Finally, the stability range of turbine and pump are compared and analyzed. The results show that the stability range of the former is usually smaller than that of the latter. (2) combined with the operation curve of pump failure in actual pumped storage power station, By intercepting some time points to calculate the corresponding transfer coefficient, the expression of the transfer coefficient varying with time is obtained, and the dynamic mathematical model of the transient process of pump power failure in regulating system is obtained. The stability of the system at different time points is analyzed by numerical simulation. The results show that the closing rate of the guide vane has an important effect on the stability of the regulating system. Secondly, the three dimensional and two dimensional diagrams of the stability region varying with time are made. The results show that the stability region decreases first and then increases with the increase of time in the transient process. At the same time, the minimum time in the stability region is obtained, that is, the most unfavorable time point. (3) the differential mathematical model is established for the transient process of load rejection and guide vane rejection in a pump turbine governing system with an upstream surge chamber. Then the flight stability condition of water pump turbine is deduced. The slope of the characteristic curve at the point of flight escape is an important factor to determine the flight escape stability. Finally, combined with the full characteristic curve of the model, the dynamic model of the relative rotational speed of the system under three working conditions of turbine, turbine braking and backwater pump is obtained, and the stability of the inverse "S" region of the system is studied by bifurcation diagram. The results show that the stable operation zone is mainly concentrated in the turbine and reverse pump conditions, and the unstable zone is mainly concentrated in the braking condition.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TV743;TV734
【相似文献】
相关期刊论文 前10条
1 WalterL.Swift;王述羲;;运用计算机改善水轮机和水泵水轮机的设计工作[J];大电机;1973年01期
2 陈德新,谢辉;低比速水泵水轮机“S”特性区的内部流动[J];水利学报;2001年02期
3 胡旭光;水泵水轮机不稳定性运行的初步探讨[J];水电站机电技术;2001年02期
4 何文才;惠州抽水蓄能电站工程水泵水轮机转速的选择[J];中国农村水利水电;2005年06期
5 何文才;惠州抽水蓄能电站水泵水轮机转速的选择[J];广东水利电力职业技术学院学报;2005年02期
6 陶喜群;;国外公司水泵水轮机和进口阀门结构技术[J];东方电机;2005年02期
7 何文才;;惠州抽水蓄能电站工程水泵水轮机转速的选择[J];广东水利水电;2008年07期
8 金宗铭;罗远红;李剑云;;惠州抽水蓄能电站水泵水轮机结构特点[J];东方电机;2009年02期
9 付之跃;刘伟超;郑津生;胡江艺;唐荣;;东方电机水泵水轮机水力开发的技术进步[J];东方电机;2010年01期
10 熊涛;;宜兴抽水蓄能电站水泵水轮机性能与结构特点[J];水电站机电技术;2010年05期
相关会议论文 前10条
1 金宗铭;罗远红;李剑云;;惠州抽水蓄能电站水泵水轮机结构特点[A];抽水蓄能电站工程建设文集(2009)[C];2009年
2 傅之跃;刘伟超;郑津生;胡江艺;;东方电机水泵水轮机水力开发的技术进步[A];抽水蓄能电站工程建设文集(2010)[C];2010年
3 熊涛;;宜兴抽水蓄能电站水泵水轮机性能与结构特点[A];抽水蓄能电站工程建设文集(2010)[C];2010年
4 王焕茂;吴钢;吴伟章;魏显著;陈元林;黎辉;;低比速水泵水轮机驼峰区数值模拟及分析7[A];2009全国大型泵站更新改造研讨暨新技术、新产品交流大会论文集[C];2009年
5 严丽;李成军;;宜兴抽水蓄能电站水泵水轮机技术和辅助设备系统设计[A];抽水蓄能电站工程建设文集(2009)[C];2009年
6 陈顺义;李成军;周杰;沈剑初;邱绍平;郑应霞;;水泵水轮机稳定性预判和对策[A];抽水蓄能电站工程建设文集(2011)[C];2011年
7 陈顺义;李成军;周杰;沈剑初;邱绍平;郑应霞;;水泵水轮机稳定性预判和对策[A];抽水蓄能电站工程建设文集2011[C];2011年
8 周忠浩;熊建平;;清远水泵水轮机蜗壳水压试验和保压浇筑技术特点[A];第十九次中国水电设备学术讨论会论文集[C];2013年
9 郑建兴;张俊芝;曾再祥;曾维才;黄金树;;黑麋峰水电站水泵水轮机模型验收试验及主要性能分析[A];水电设备的研究与实践——第十七次中国水电设备学术讨论会论文集[C];2009年
10 王泉龙;;抽水蓄能电站水泵水轮机设计浅析[A];抽水蓄能电站工程建设文集(2010)[C];2010年
相关博士学位论文 前5条
1 杨桀彬;基于空间曲面的水泵水轮机全特性及过渡过程的研究[D];武汉大学;2014年
2 孙跃昆;低比转速水泵水轮机驼峰稳定性及其影响因素研究[D];清华大学;2016年
3 尹俊连;水泵水轮机“S”区内流机理及优化设计研究[D];浙江大学;2012年
4 纪兴英;水泵水轮机“S”特性预测方法研究[D];武汉大学;2013年
5 刘锦涛;基于非线性局部时均化模型的水泵水轮机“S”区稳定性分析[D];浙江大学;2013年
相关硕士学位论文 前10条
1 朱伟;水泵水轮机S特性形成机理的水动力学分析[D];清华大学;2015年
2 姚洋阳;水泵水轮机泵工况驼峰特性流动机理数值研究[D];清华大学;2015年
3 李威;水泵水轮机“S”区的瞬态特性研究[D];哈尔滨工业大学;2016年
4 陆杰;水泵水轮机“S”形区内流特性研究[D];武汉大学;2017年
5 韩冬冬;可逆式水泵水轮机全流道三维非定常数值模拟[D];昆明理工大学;2017年
6 何晓林;水泵水轮机内部流动及水力特性[D];华南理工大学;2012年
7 舒]峰;水泵水轮机驼峰区与“S”区数值模拟研究[D];哈尔滨工业大学;2013年
8 刘星星;水泵水轮机过渡过程半实物仿真平台的软件设计与实现[D];华中科技大学;2013年
9 王焕茂;混流式水泵水轮机驼峰区数值模拟及试验研究[D];华中科技大学;2009年
10 杨欣;水泵水轮机全特性空间曲面描述与水力过渡过程调节控制研究[D];华中科技大学;2012年
,本文编号:2405623
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2405623.html