当前位置:主页 > 科技论文 > 水利工程论文 >

潮流发电试验场水动力特性数学模型研究

发布时间:2019-04-23 07:39
【摘要】:能源危机和环境污染是当今世界面临的两大主要问题,而潮流能作为绿色清洁的可再生能源,具有储量丰富、可预测性和环境生态友好等巨大优势,开发前景十分可观。许多海洋资源丰富的国家先后制定了相应的政策和战略目标,以大力推动潮流能发电技术的研究,并成功建设了一定规模的潮流能发电试验场。为了解发电装置放置后对流场的影响情况,合理布置试验场发电机组泊位,本文以舟山普陀山岛-葫芦岛潮流能示范工程为研究场址,运用数学模型模拟发电装置对试验区局部近场、大范围远场水动力的影响情况。本文首先从数模角度简要介绍了国内外研究学者对潮流能试验场水动力问题的研究方法和结论,以此为基础,提出一种基于能量方程的发电装置概化方法,即采用流场上下游之间的沿程阻力损失量化装置对水流的影响,并将该影响转化为相应的底床阻力,推导潮流发电装置的等效糙率系数。然后建立三维潮流能装置的局部流场模型,利用CFD软件模拟分析装置在七种转速-流速组合下,局部流场的流速分布异同点;并根据发电装置的概化方法,计算各组合下装置的等效糙率和综合糙率,通过回归分析得到来流流速与综合糙率之间的函数关系。最后将该函数关系代入舟山普陀山岛-葫芦岛二维潮流数学模型,通过修改装置所在网格的糙率值来模拟装置产生的影响。在二维模型的计算中,分别研究了某个涨落潮历时下全体装置放置时、大潮过程下单一装置放置时和全潮过程下全体装置放置时,整个试验场水动力的响应程度和范围。结果表明,装置对流场的影响区域大小与潮流流速及装置泊位点附近的地形有关,离装置越远,装置对流场的影响越小。从整体上来说,装置对远场流速的影响程度较小,流速的变化量最小在2%左右,最大不超过装置放置前流速的8%。
[Abstract]:Energy crisis and environmental pollution are two major problems facing the world today. As a green and clean renewable energy, tidal current has great advantages such as abundant reserves, predictability and environmental and ecological friendliness, so the prospect of development is very considerable. Many countries rich in marine resources have formulated corresponding policies and strategic objectives in order to vigorously promote the research of tidal current energy generation technology and successfully build a certain scale of tidal energy generation test ground. In order to understand the influence of the installation on the flow field and arrange the berth of the generator set in the test site reasonably, this paper takes the Putuo Shan-Huludao tidal current energy demonstration project in Zhoushan as the research site. The mathematical model is used to simulate the influence of the generator on the local near-field and large-range far-field hydrodynamic forces in the test area. In this paper, the research methods and conclusions of hydrodynamics in tidal current energy test site are briefly introduced from the point of view of numerical simulation, and a generalizing method of generating equipment based on energy equation is put forward. That is to say, the influence of the device for quantifying the resistance loss along the flow field between the upper and lower reaches of the flow field is adopted, and the effect is transformed into the corresponding bottom bed resistance, and the equivalent roughness coefficient of the power flow generator is derived. Then the local flow field model of the three-dimensional tidal current energy device is established and the velocity distribution of the local flow field is simulated and analyzed with CFD software under the combination of seven rotational speeds and velocities. According to the generalizing method of the generator, the equivalent roughness and the comprehensive roughness of each unit are calculated, and the functional relationship between the flow velocity and the comprehensive roughness is obtained by regression analysis. Finally, this function is introduced into the two-dimensional tidal current mathematical model of Putuo Mountain Island-Huludao Island in Zhoushan, and the influence of the device is simulated by modifying the roughness value of the grid in which the device is located. In the calculation of the two-dimensional model, the response degree and range of hydrodynamic force in the whole test site are studied when the whole device is placed in a fluctuating tide calendar, when a single device is placed in the spring tide process, and the whole device is placed in the whole tidal process. The results show that the influence area of the device on the flow field is related to the tidal current velocity and the topography near the device berth. The farther away from the device, the less the influence of the device on the flow field is. On the whole, the influence of the device on the far-field velocity is small, the change of the velocity is at least about 2%, and the maximum is not more than 8% of the velocity before the device is placed.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM612

【参考文献】

相关期刊论文 前10条

1 顾恩凯;;舟山海洋能开发对通航环境影响研究及海事监管对策[J];中国海事;2015年04期

2 王林;;葡萄牙阿尔克瓦Ⅱ期电站[J];水利水电快报;2014年05期

3 韩晔;;潮汐能发电在福建电网的应用前景[J];湖南水利水电;2013年06期

4 夏增艳;郭毅;张亮;杨勇;段云棋;张巍;王鑫;王锰;;垂直轴潮流能发电装置模型测试技术研究[J];海洋技术;2013年04期

5 张亮;李新仲;耿敬;张学伟;;潮流能研究现状2013[J];新能源进展;2013年01期

6 包锦球;陈幼迪;万智慧;;美国小企业发展支持体系建设[J];唯实;2013年03期

7 宁凌;唐静;廖泽芳;;中国沿海省市海洋资源比较分析[J];中国渔业经济;2013年01期

8 闫淑萍;;国家能源科技“十二五”规划(摘选)(续三)[J];河北化工;2012年11期

9 苏佳纯;曾恒一;肖钢;王建丰;姜家骏;;海洋温差能发电技术研究现状及在我国的发展前景[J];中国海上油气;2012年04期

10 段自豪;陈正寿;;潮流发电现状分析及未来展望[J];中国水运(下半月);2012年02期

相关会议论文 前2条

1 王传];;国内外潮流能开发利用现状及中欧合作研究[A];中国第六届光伏会议论文集[C];2000年

2 赵龙武;王树杰;李冬;;国内外潮流能利用技术现状与发展[A];第二届全国海洋能学术研讨会论文集[C];2009年

相关重要报纸文章 前1条

1 陈勇;;能源科技发展新趋势[N];人民日报;2015年

相关博士学位论文 前3条

1 王金强;国际海底资源分配与美国的政策选择[D];复旦大学;2011年

2 王树杰;柔性叶片潮流能水轮机水动力学性能研究[D];中国海洋大学;2009年

3 吴国祥;变速恒频双馈机风力发电的若干关键技术研究[D];上海大学;2009年

相关硕士学位论文 前10条

1 冯超;新型竖轴潮流能发电支撑结构的力学分析[D];大连理工大学;2014年

2 韩广超;渔船锚泊潮流发电装置设计研究[D];浙江海洋学院;2014年

3 史为超;锚定式双导管潮流能发电装置理论研究与试验[D];哈尔滨工业大学;2013年

4 李林杰;潮流能发电场水轮机排布对流场影响研究[D];中国海洋大学;2013年

5 郭鑫;风力发电机组在线监控系统研究[D];扬州大学;2013年

6 冯天a\;潮流发电模拟装置研究[D];哈尔滨工程大学;2013年

7 袁金雄;潮流能提取水动力响应数值研究[D];浙江大学;2012年

8 侯放;基于FVCOM的舟山群岛海域潮流能分析[D];中国海洋大学;2012年

9 安佰娜;潮流能发电场尾流场数值模拟及其多机组影响规律研究[D];中国海洋大学;2012年

10 赵健;某潮流电站载体结构强度分析[D];哈尔滨工程大学;2012年



本文编号:2463258

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2463258.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户86844***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com