基于社交关系与矩阵补全的协同过滤的推荐算法研究
[Abstract]:In recent years, computer network communication and other technologies have become increasingly sophisticated, people have entered a new era of big data, the arrival of the big data era has further increased the degree of data expansion. Traditional information retrieval systems and recommendation systems can no longer meet the retrieval requirements under the big data environment. The birth of recommendation system solves the problem of inaccuracy of search results in some aspects. Recommendation algorithm is the core of a recommendation system, and collaborative filtering recommendation algorithm is one of the most classical algorithms in the field of recommendation system. However, under the background of this new big data, there are some problems in collaborative filtering recommendation system, which can not solve the problem of sparse score matrix and cold start. In this paper, some improvements have been made to these two problems, the idea of social relations has been added to the recommendation process of collaborative filtering, and the method of matrix complement has been improved. The main work is as follows: on the one hand, The idea of social relationship is added to the similarity calculation process, and a collaborative filtering recommendation algorithm based on social relationship is obtained. Through the social relationship data, each user's friend set can be obtained, and the target user can be recommended according to the items or content that the target user's friends like. The algorithm can solve the cold start based on the user better. It can improve the new user's recommendation satisfaction, this article has carried on the verification through the experiment. On the other hand, a collaborative filtering recommendation algorithm based on social relationship and conditional complement is obtained by selecting the position of matrix complement conditionally. The algorithm further improves the method of matrix complement based on the idea of social relations, and selects the items that meet certain conditions to complement the matrix, which makes the matrix more accurate and reduces the data redundancy. This method can solve the problem of data sparsity, improve the efficiency of the algorithm and improve the accuracy of recommendation. In this paper, quantitative analysis and comparison of the improved algorithm are carried out through specific experiments. The experimental results show that the improved algorithm has higher recommendation accuracy and efficiency, and better MAE / MRSE value.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 李颖基,彭宏,郑启伦,曾炜;自动分层推荐算法[J];计算机应用;2002年11期
2 徐义峰;徐云青;刘晓平;;一种基于时间序列性的推荐算法[J];计算机系统应用;2006年10期
3 余小鹏;;一种基于多层关联规则的推荐算法研究[J];计算机应用;2007年06期
4 张海玉;刘志都;杨彩;贾松浩;;基于页面聚类的推荐算法的改进[J];计算机应用与软件;2008年09期
5 张立燕;;一种基于用户事务模式的推荐算法[J];福建电脑;2009年03期
6 王晗;夏自谦;;基于蚁群算法和浏览路径的推荐算法研究[J];中国科技信息;2009年07期
7 周珊丹;周兴社;王海鹏;倪红波;张桂英;苗强;;智能博物馆环境下的个性化推荐算法[J];计算机工程与应用;2010年19期
8 王文;;个性化推荐算法研究[J];电脑知识与技术;2010年16期
9 张恺;秦亮曦;宁朝波;李文阁;;改进评价估计的混合推荐算法研究[J];微计算机信息;2010年36期
10 夏秀峰;代沁;丛丽晖;;用户显意识下的多重态度个性化推荐算法[J];计算机工程与应用;2011年16期
相关会议论文 前10条
1 王韬丞;罗喜军;杜小勇;;基于层次的推荐:一种新的个性化推荐算法[A];第二十四届中国数据库学术会议论文集(技术报告篇)[C];2007年
2 唐灿;;基于模糊用户心理模式的个性化推荐算法[A];2008年计算机应用技术交流会论文集[C];2008年
3 秦国;杜小勇;;基于用户层次信息的协同推荐算法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
4 周玉妮;郑会颂;;基于浏览路径选择的蚁群推荐算法:用于移动商务个性化推荐系统[A];社会经济发展转型与系统工程——中国系统工程学会第17届学术年会论文集[C];2012年
5 苏日启;胡皓;汪秉宏;;基于网络的含时推荐算法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
6 梁莘q,
本文编号:2131303
本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/2131303.html