Agent技术在元搜索引擎中的应用研究
[Abstract]:With the rapid development of Internet, the content of network information increases rapidly. How to obtain valuable information accurately and efficiently has become a topic that researchers and users pay more and more attention to. The existing independent search engine has the defects of small coverage of database and low recall rate. Meta search engine expands the range of retrieval by calling multiple independent search engines and improves the recall to a certain extent. However, the independent search engine returns a large number of duplicate redundant results, which leads to the increase of the burden of the display agent of the meta-search engine, the reduction of the system precision rate and the long response time. In order to solve this defect, this paper introduces Agent technology, makes full use of the characteristics of Agent's generation rationality, intelligence and autonomy, applies the Agent technology to the meta search engine, sets their respective advantages in web information mining and information retrieval. Improve the query performance and retrieval efficiency of meta-search engine. The main work of this paper is summarized as follows: 1. Introduce the related theoretical knowledge of Agent and MAS, as well as the concept of meta search engine, working principle and so on. This paper analyzes and summarizes the application status of Agent technology in meta search engine at home and abroad, and points out the shortcomings of traditional meta search engine. 2. Establish an intelligent meta-search engine system model based on reward mechanism. The system model creates the corresponding member Agent, for each member search engine separately and collects the query results of the member search engine by using the member Agent and does the corresponding processing. 3. A member search engine scheduling strategy based on reward mechanism is proposed, which adapts to the system model. The scheduling strategy fully considers the factors that affect the query performance of the meta search engine, and ranks the member search engines according to a certain reward mechanism, and gives priority to the most important member search engines. 4. A query result composition strategy based on reward mechanism is proposed, which is suitable for the system model. The synthesis strategy is aimed at the query result of the scheduled member search engine. According to the comprehensive matching degree between the query result and the query request, the query results are merged and sorted. 5. The cooperative communication among the Agent in the system is realized by using KQML language, and the system performance is analyzed and compared. It is proved that this intelligent meta search engine based on the reward mechanism has its recall rate. Precision rate and response time are better than traditional meta-search engine to some extent.
【学位授予单位】:河北工程大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP391.3;TP18
【参考文献】
相关期刊论文 前10条
1 刘双印;徐龙琴;沈玉利;;改进小生境遗传算法在元搜索引擎调度优化中的研究[J];重庆师范大学学报(自然科学版);2008年03期
2 董红斌,李滨丽,李洪峰;基于Mobile Agent的信息搜索技术[J];哈尔滨师范大学自然科学学报;2002年02期
3 汪晓岩,胡庆生,李斌,庄镇泉;面向Internet的个性化智能信息检索[J];计算机研究与发展;1999年09期
4 王黎明;黄厚宽;;一个基于多阶段的多Agent多问题协商框架[J];计算机研究与发展;2005年11期
5 高坚;张伟;;多Agent系统中双边多指标自动协商的ACEA算法[J];计算机研究与发展;2006年06期
6 常志明;毛新军;王戟;齐治昌;;多Agent系统中软构件的动态绑定机制及其操作语义[J];计算机研究与发展;2007年05期
7 贺利坚;黄厚宽;张伟;;多Agent系统中信任和信誉系统研究综述[J];计算机研究与发展;2008年07期
8 童向荣;黄厚宽;张伟;;一种基于案例的Agent多议题协商模型[J];计算机研究与发展;2009年09期
9 路海明,卢增祥,徐晋晖,李衍达;基于Agent技术的个性化主动信息服务[J];计算机工程与应用;1999年06期
10 陈俊杰,薛云,宋翰涛,陆玉昌,余雪丽;基于Agent的元搜索引擎的研究与设计[J];计算机工程与应用;2003年10期
相关博士学位论文 前1条
1 吕琳;基于Multi-agent的协同制造资源共享的相关理论与技术研究[D];武汉理工大学;2007年
相关硕士学位论文 前6条
1 彭喜化;基于Agent的元搜索引擎结果优化研究[D];西南农业大学;2004年
2 杨刚华;基于Agent的个性化信息检索系统研究[D];大连理工大学;2005年
3 王平;多Agent系统中的信任模型研究[D];西南师范大学;2005年
4 王小朋;基于代理的元搜索引擎的研究[D];辽宁工程技术大学;2005年
5 孟文杰;元搜索引擎的调度策略研究[D];中国石油大学;2007年
6 向丹;专业搜索引擎中的多Agent协调研究[D];西华大学;2008年
,本文编号:2345181
本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/2345181.html