心电信号采集及心理压力识别算法研究
发布时间:2018-04-11 12:38
本文选题:心电信号 + MSP430 ; 参考:《燕山大学》2014年硕士论文
【摘要】:慢性心理压力对人体的健康产生威胁,构建有效的心理压力评估系统可以帮助识别心理压力状态,进而实现适当干预。心电信号蕴含丰富的情感信息,本文设计了一个以心电信号为核心的心理压力评估系统,实现了心电信号采集的12导联硬件电路和基于多生理参数决策层融合实现心理压力识别的软件分析系统。 首先,,本文基于心电信号特点设计了一种以采集处理为主要功能的12导联心电信号采集电路,包括信号放大、信号滤波、模/数转换、串口通信等功能模块。该电路可以采集人体胸部表面和四肢的心电信号,然后对心电信号进行两级放大、滤波以及基于MSP430芯片的模/数转换,最后转变为串行数据经过串口传送给计算机供后续算法处理。 然后,根据心理压力诱发原理设计压力诱发程序对受试者进行刺激,利用本文设计的心电信号采集电路采集心电信号,通过美国的多导生理记录仪MP150采集表面肌电信号和手指脉搏波信号。采集了9名受试者共36组心电信号,18组表面肌电信号,18组手指脉搏波信号作为心理压力状态评估的数据源,其中的18组心电信号9组表面肌电信号,9组手指脉搏波信号为静息状态下的生理信号,作为识别心理压力的对照组。 最后,基于D-S证据理论构建多生理参数决策层融合方法识别心理压力。首先对采集到的数据进行初步处理,提取特征以及初级压力识别,然后基于D-S证据理论对心电信号、表面肌电信号和手指脉搏波信号做决策层融合评估心理压力状态。三种生理参数的数据经过融合后的心理压力最高信任度达0.9987,比融合前单一参数识别心理压力的最高信任度0.8667高出了0.1320。经过多生理参数融合以后的实验结果表明,融合后的评估结果比单一信号的评估结果提高了,既验证了心电信号采集和分析系统的有效性也证明了基于多生理参数的心理压力状态评估融合模型的优越性。
[Abstract]:The health threat of chronic psychological stress on the human body, the construction of psychological pressure of effective evaluation system can help identify the psychological pressure, so as to realize the proper intervention. Rich emotional information contained in the ECG signal, this paper designs a ECG signal as the core of the psychological stress evaluation system, realized the hardware circuit of 12 lead ECG signal acquisition and based on multi parameter decision fusion recognition software to realize the psychological pressure analysis system.
First of all, the ECG signal based on the characteristics of a design of a data acquisition and processing is the main function of the 12 lead ECG signal acquisition circuit, including signal amplification, signal filtering, analog / digital conversion, serial communication function module. The circuit can ECG signal acquisition of human chest surface and limbs, and then the ECG signal was two amplification, filtering and MSP430 chip analog to digital conversion based on the last into serial data transmitted by serial port to computer for further processing algorithm.
Then, according to the design principle of pressure induced by psychological stress induced by the program of subjects were stimulated by ECG signal acquisition circuit of ECG signal acquisition is designed in this paper, polygraph MP150 acquisition of surface EMG signal and finger pulse wave signal acquisition by the American. 9 subjects were divided into 36 groups of 18 groups of surface ECG signal the EMG signal, 18 groups of finger pulse wave signal as a psychological pressure to evaluate the state of the data source, 9 groups of surface EMG signal of ECG signals in 18 groups, 9 groups of finger pulse wave signal for physiological signal in resting state, as the control group to identify psychological pressure.
Finally, the construction of multiple physiological parameters decision fusion method to identify the psychological pressure based on D-S evidence theory. Firstly, the data was collected and preliminary processing, feature extraction and recognition based on the primary pressure, then D-S evidence theory for ECG signal, surface EMG signal and finger pulse wave signal for decision fusion to assess the psychological pressure. Three the physiological parameters data after fusion of psychological pressure the highest trust degree reached 0.9987, more than the highest trust before fusion single parameter identification of psychological pressure of 0.8667 higher than 0.1320. after fusion of multiple physiological parameters. The experimental results show that the evaluation of fusion results than the single assessment results to improve the signal, which verifies the validity of the signal acquisition and analysis system of ECG also proved the superiority evaluation fusion model of psychological stress state of multiple physiological parameters based on.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN911.7
【参考文献】
相关期刊论文 前10条
1 李茵;;以医学心理学研究方法构建问题学生矫治模式的探索[J];安徽卫生职业技术学院学报;2009年03期
2 施敏敏;何学红;;远程无线心电监护系统的硬件设计[J];电子设计工程;2012年21期
3 贾佳;吕建新;辜良愉;;基于SVM的多传感器信息融合技术在农用柴油机故障诊断中的应用研究[J];中国农机化学报;2013年02期
4 孙丽华;赵刚;彭强;谷满意;;浅析计算机自动测试系统的电磁干扰与抑制方法[J];科技创新与应用;2013年27期
5 杜红;崔明根;;一种新的连续小波变换[J];黑龙江大学自然科学学报;2005年06期
6 侯宏花;桂志国;;小波熵在心电高频噪声处理和R波检测中应用[J];计算机工程与应用;2010年09期
7 刘大宁;杨永乐;白林;;SVM核函数对分类精度影响的研究[J];佳木斯大学学报(自然科学版);2012年04期
8 杨国宁;冯秀芳;;D-S证据理论中冲突证据融合新方法[J];计算机应用与软件;2014年02期
9 孙建华;赵晓典;高永飞;;PC机与单片机的串口通信系统设计[J];软件导刊;2010年09期
10 曾玲娟,伍新春;国外职业倦怠研究概说[J];沈阳师范大学学报(社会科学版);2003年01期
本文编号:1736078
本文链接:https://www.wllwen.com/kejilunwen/wltx/1736078.html