硅线波导中非线性光控光特性研究
[Abstract]:Compared with the traditional discrete optoelectronic optical processing technology, the photonic integrated chip reduces the cost and complexity of the network. As a new type of silicon-based optoelectronic material,. SOI (Silicon-on-insulator is considered to be the most promising technology to meet the needs of future communication network development. It is fully compatible with the existing silicon-based VLSI technology. Therefore, it has become the focus of the study of silicon photonics. Silicon wire waveguide is one of the important components of photonic integrated chip. Its submicron structure has a strong limiting ability to the light field and can realize the nonlinear photon information processing function. In this paper, based on the national 973 project "Ultra-fast nonlinear Optical Control Mechanism and All-optical 2R/3R Regeneration Integrated Chip", the theoretical study of four-wave mixing effect in silicon waveguide is carried out. The main work is as follows: 1. The fourth order Runge-Kutta method is used to calculate the four wave mixing coupling mode equation of guided wave in silicon wire waveguide. The dispersion characteristics and optical absorption loss (linear transmission loss, two photon absorption) of silicon wire waveguide structure under single mode propagation are analyzed. The influence of carrier absorption on the optical power of degenerate four-wave mixing is related to the linear and nonlinear terms of the total phase mismatch factor, respectively. The calculation results show that increasing the width or decreasing the height of the silicon wire waveguide will cause the dispersion curve to move downwards, and for the silicon wire waveguide with high transmission loss, increasing the pump power or decreasing the waveguide length will help to obtain the optimized output idling frequency optical power. The effects of two-photon absorption and free carrier absorption will lead to the attenuation of pump power, thus changing the nonlinear phase mismatch factor and the four-wave mixing efficiency. Considering the above factors, the width and height of silicon wire waveguide are chosen to be 500 nm and 250 nm, respectively, and the simulation results are verified by FDTD method. The mode distribution and dispersion curve are in agreement with the numerical results. 2. The characteristics of the power transfer function (PTF) of the data pumped four-wave mixing in a rectangular silicon-wire waveguide are calculated, and its saturation point, sign-passing (Mark) threshold point and space-sign (Space) threshold point are analyzed. The calculation results show that for the case of the parameter obtained in this paper, the linear transmission loss of 1. 2 ~ 2 ~ 2. 0 cm, auxiliary optical wave length of 1 500 ~ 1 580 nm, is 0.5 ~ 4 dB/cm. The 2R regenerator based on silicon-wire waveguide structure can provide an extinction ratio of about 4.5 dB, in which the effective carrier lifetime should be more than 2.5 ns.3.. The phase sensitivity characteristics of non degenerate four wave mixing parametric amplification process in silicon wire waveguide are studied. According to the input-output phase transfer curve, the parameters which can quantitatively evaluate the phase compression performance are defined, including the input-output phase jitter tolerance and phase compression efficiency, which can be used to analyze the compression performance of multiple phase states, such as signal transmission and null number. The effects of pump power, signal optical to idler power ratio, signal optical wavelength, waveguide length and loss on the phase compression performance are discussed. The results show that when the pump power is 700 mw, the optimal phase regeneration effect can be obtained when the ratio of optical to idling power is 6 dB, which can provide theoretical guidance for the related experimental research in the next step.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TN814
【相似文献】
中国期刊全文数据库 前10条
1 邓晓清,杨沁清,王红杰,胡雄伟,王启明;硅基二氧化硅波导的双折射效应补偿理论分析[J];半导体学报;2002年12期
2 任武,高本庆,杨仕明;波导宽边辐射缝隙的全波分析[J];现代雷达;2004年02期
3 曹微微;吕国强;杨军;范立善;;毫米波波导设计分析[J];现代电子技术;2008年03期
4 陈抱雪,袁一方,矶守;宽带消波长依存波导耦合器的统计优化设计[J];光学学报;2001年08期
5 王志勇;戴基智;;新型宽角度、低损耗三分支波导结构及其数值模拟分析[J];激光杂志;2007年03期
6 殷瑞剑;刘濮鲲;肖刘;;损耗介质周期加载圆柱波导场分析[J];微波学报;2008年S1期
7 张礼朝;梁斌明;庄松林;;光子晶体平行波导耦合效应研究及应用[J];光电工程;2011年07期
8 赵芳灿;;毫米波低损耗波导的发展趋势[J];光纤与电缆及其应用技术;1991年01期
9 祖继锋;聚合物波导在光互连中的应用[J];高技术通讯;1995年03期
10 方静,,肖衍明,尹文言;矩形手征波导中混合模的边元有限元分析法和传输特性研究[J];电子学报;1996年03期
中国重要会议论文全文数据库 前10条
1 梁华伟;阮双琛;张敏;苏红;权润爱;史学舜;;弯曲波导耦合理论研究[A];第九届全国光电技术学术交流会论文集(上册)[C];2010年
2 张玲芬;;左手介质圆柱形波导的模式特性分析[A];2009年全国天线年会论文集(上)[C];2009年
3 赵柳;刘庆想;李相强;李军;;径向波导模式分析[A];四川省电子学会高能电子学专业委员会第四届学术交流会论文集[C];2005年
4 曹斌照;许福永;;傅立叶展开-差分法分析H波导[A];2007年全国微波毫米波会议论文集(上册)[C];2007年
5 庞拂飞;韩秀友;蔡海文;瞿荣辉;方祖捷;;溶胶-凝胶波导环形谐振腔的实验研究[A];全国第十二次光纤通信暨第十三届集成光学学术会议论文集[C];2005年
6 樊德森;;波导结和波导-喇叭辐射器分析导波数值边界条件及其应用[A];1991年全国微波会议论文集(卷Ⅱ)[C];1991年
7 吴自浩;顾平;;大型组合变换波导加工工艺探析[A];中国电子学会生产技术学分会机械加工专业委员会第七届学术年会论文集[C];1998年
8 张新定;赖冬梅;翁宝龙;;波导结构中的几何光传输(英文)[A];第十五届全国量子光学学术报告会报告摘要集[C];2012年
9 许雄;魏彦玉;沈飞;殷海荣;刘洋;黄民智;徐进;王战亮;宫玉彬;王文祥;;正弦波导的电磁特性及其在太赫兹波段的应用[A];2011年全国微波毫米波会议论文集(下册)[C];2011年
10 陈叙;李锡华;赵龙;李霞;王明华;;电场辅助扩散对玻璃离子交换波导的影响[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年
中国硕士学位论文全文数据库 前10条
1 陈颖;基于复合左右手波导的非等间距谐振波导隙缝阵的研究[D];电子科技大学;2011年
2 李丽丝;高速铁路环境下矩形漏波导辐射特性的研究[D];北京交通大学;2012年
3 高逸晖;殷钢波导变形分析及控制[D];西安电子科技大学;2007年
4 刘科检;深亚波长金属—介电复合波导结构的模式分析和传输线理论研究[D];哈尔滨工业大学;2013年
5 鄢良才;电磁波在波导中的异常传播研究[D];电子科技大学;2002年
6 赵鹏程;倒脊型有源波导研究[D];吉林大学;2008年
7 赵玲玲;改进对称波导结构的表面等离子激元传输特性研究[D];燕山大学;2015年
8 冯耀军;双面金属包覆波导的应用研究[D];上海交通大学;2007年
9 文学金;波导模式基本理论及其应用[D];浙江大学;2004年
10 戴一鸣;K波段波导缝隙天线阵列的设计[D];安徽大学;2015年
本文编号:2378566
本文链接:https://www.wllwen.com/kejilunwen/wltx/2378566.html