基于声学特征的几种典型乐器识别研究
发布时间:2025-03-18 05:13
近年来,随着计算机科学信息技术的迅猛发展,音频信号的声学方面的相关研究已经逐渐成为当前音乐领域的研究热点。基于声学特征的乐器识别是当前音乐信号分析工作的重点,为了提高乐器音频信号种类识别正确率,本论文主要是对收集到的古筝、吉他、钢琴、手风琴、口琴、唢呐这6种乐器的音频进行研究,主要包括有以下几个方面的工作:首先,本论文针对乐器音频信号中附加噪声导致的乐器音频信号识别率低的问题,本文采用改进的变分模态分解(VMD)对乐器音频信号进行去噪处理。本论文是通过先采用VMD将乐器音频信号分解成一系列平稳的窄带分量(IMF),之后,通过相关系数大于或等于0.5的IMF与相关系数小于0.5的IMF被小波阈值去噪后得到的有效的信息一起重构信号的方式来对VMD进行改进的。在相同的实验环境下,分别研究了小波阈值去噪、经验模态分解、VMD、改进的VMD等方法对乐器音频信号的去噪效果的优劣,仿真实验结果表明,本文采用的改进的VMD算法比其他去噪算法去噪鲁棒性更好。其次,为了在去噪后能进一步提高分类正确率,从乐器音频信号中提取充分体现声音特性的声音特征,该声音特征为基于改进的核主成分分析(KPCA)降维的Mel频...
【文章页数】:65 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
1 绪论
1.1 选题背景与研究意义
1.2 国内外发展现状
1.2.1 国内相关研究现状
1.2.2 国外相关研究现状
1.3 研究的主要内容
1.4 论文结构安排
2 乐器识别理论基础
2.1 乐器种类及识别对象
2.2 乐器音频信号的三大特征
2.3 乐器音频库
2.4 相关评价标准
2.5 本章小结
3 基于改进的变分模态分解去噪
3.1 音频信号预处理
3.2 本征模函数
3.3 经验模态分解
3.4 小波阈值去噪
3.5 改进的变分模态分解
3.5.1 构造变分问题
3.5.2 求解变分问题
3.5.3 VMD算法步骤
3.5.4 改进的VMD去噪
3.6 去噪算法性能分析
3.7 本章小结
4 基于改进的核主成分分析的乐器声学特征提取
4.1 良好的声学特征
4.1.1 Mel频率倒谱系数
4.1.2 一阶差分MFCC
4.2 特征提取仿真实验与分析
4.2.1 MFCC分析
4.2.2 一阶差分MFCC分析
4.2.3 特征识别性能分析
4.3 基于核主成分分析的组合特征降维
4.3.1 主成分分析
4.3.2 核主成分分析
4.3.3 改进的核主成分分析
4.3.4 特征降维仿真实验
4.4 本章小结
5 基于改进的PSOSVM的乐器分类识别
5.1 传统的音频信号分类方法
5.1.1 SVM
5.2 PSO及其改进算法
5.2.1 PSO算法
5.2.2 改进的自适应PSO
5.2.2.1 自适应惯性权重
5.2.2.2 自适应学习因子
5.3 乐器音频信号的识别结果与分析
5.4 本章小结
结论与展望
参考文献
攻读学位期间发表的学术论文
致谢
本文编号:4036056
【文章页数】:65 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
1 绪论
1.1 选题背景与研究意义
1.2 国内外发展现状
1.2.1 国内相关研究现状
1.2.2 国外相关研究现状
1.3 研究的主要内容
1.4 论文结构安排
2 乐器识别理论基础
2.1 乐器种类及识别对象
2.2 乐器音频信号的三大特征
2.3 乐器音频库
2.4 相关评价标准
2.5 本章小结
3 基于改进的变分模态分解去噪
3.1 音频信号预处理
3.2 本征模函数
3.3 经验模态分解
3.4 小波阈值去噪
3.5 改进的变分模态分解
3.5.1 构造变分问题
3.5.2 求解变分问题
3.5.3 VMD算法步骤
3.5.4 改进的VMD去噪
3.6 去噪算法性能分析
3.7 本章小结
4 基于改进的核主成分分析的乐器声学特征提取
4.1 良好的声学特征
4.1.1 Mel频率倒谱系数
4.1.2 一阶差分MFCC
4.2 特征提取仿真实验与分析
4.2.1 MFCC分析
4.2.2 一阶差分MFCC分析
4.2.3 特征识别性能分析
4.3 基于核主成分分析的组合特征降维
4.3.1 主成分分析
4.3.2 核主成分分析
4.3.3 改进的核主成分分析
4.3.4 特征降维仿真实验
4.4 本章小结
5 基于改进的PSOSVM的乐器分类识别
5.1 传统的音频信号分类方法
5.1.1 SVM
5.2 PSO及其改进算法
5.2.1 PSO算法
5.2.2 改进的自适应PSO
5.2.2.1 自适应惯性权重
5.2.2.2 自适应学习因子
5.3 乐器音频信号的识别结果与分析
5.4 本章小结
结论与展望
参考文献
攻读学位期间发表的学术论文
致谢
本文编号:4036056
本文链接:https://www.wllwen.com/kejilunwen/wltx/4036056.html