当前位置:主页 > 科技论文 > 物理论文 >

飞秒光学脉冲电场包络一阶时域微分实验研究

发布时间:2018-07-31 10:25
【摘要】:光学脉冲的时域微分技术在时空测量领域有着重要应用,利用微分脉冲可使时空测量的精度达到或超越标准量子极限。分别利用双折射晶体和傅里叶脉冲整形系统两种方法对中心波长为813nm、脉宽为130fs的脉冲电场包络进行了一阶微分实验研究。利用双折射晶体得到的脉冲电场包络一阶微分能量转换效率为0.36%,电场强度的频谱分布只在中心频率附近的光谱半峰全宽范围内可与理论值较好地吻合,重合度达到91.36%,距离中心频率越远,与理论值差距越大。利用傅里叶脉冲整形系统得到的脉冲电场包络一阶微分能量转换效率达到11.10%,在空间光调制器的有效调制范围内,电场强度与理论值的重合度超过98.37%。与基于双折射晶体的脉冲微分方法相比,基于傅里叶脉冲整形系统的脉冲微分方法具有更高的能量转换效率,与理论值吻合的光谱范围更大,且能方便地产生任意阶数的微分脉冲,能更好地满足高精度时间同步领域的应用需求。
[Abstract]:The time-domain differential technique of optical pulse has an important application in the field of space-time measurement. The accuracy of space-time measurement can reach or exceed the standard quantum limit by using differential pulse. The first-order differential experiments of pulse electric field envelope with a central wavelength of 813 nm and pulse width of 130fs were carried out by using birefringent crystal and Fourier pulse shaping system respectively. The first-order differential energy conversion efficiency of pulse electric field envelope obtained by using birefringent crystal is 0.36 and the spectrum distribution of electric field intensity is only in the full range of the spectrum half peak near the center frequency, which is in good agreement with the theoretical value. The coincidence degree is 91.36, the farther away from the center frequency, the bigger the gap with the theoretical value. The first-order differential energy conversion efficiency of the pulse electric field envelope obtained by Fourier pulse shaping system is 11.10. The coincidence between the electric field intensity and the theoretical value is more than 98.37 in the effective modulation range of the spatial light modulator. Compared with the pulse differential method based on birefringence crystal, the pulse differential method based on Fourier pulse shaping system has a higher energy conversion efficiency and a larger spectral range consistent with the theoretical values. Moreover, the differential pulse of any order can be generated conveniently, and it can better meet the needs of high precision time synchronization applications.
【作者单位】: 中国科学院国家授时中心时间频率基准实验室;中国科学院大学;西安科技大学理学院;
【基金】:国家自然科学基金(91336108,11273024,91636101,Y133ZK1101) 中国科学院科研装备研制项目;中国科学院前沿科学重点研究项目(QYZDB-SSWSLH007) 中组部“青年拔尖人才”支持计划
【分类号】:O437

【参考文献】

相关期刊论文 前5条

1 褚赛赛;李洪云;王树峰;杨宏;龚旗煌;;激光脉冲整形在微纳光学系统中的应用研究进展[J];光学学报;2016年10期

2 张留洋;金海洋;曲玉秋;浦绍质;黄金哲;汪东升;杨莹;;基于棱镜对的超短脉冲压缩器的光学设计[J];激光与光电子学进展;2016年10期

3 辛璨焘;高春清;李辰;王铮;;螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量[J];物理学报;2012年17期

4 刘邈;杨学友;刘常杰;;正交混频相位式激光测距方法与系统实现[J];中国激光;2012年02期

5 宋有建;胡明列;王胭脂;邵建达;晋云霞;柴路;范正修;王清月;;基于国产啁啾镜色散补偿的近10fs钛宝石激光器锁模特性的研究[J];光学学报;2010年11期

【共引文献】

相关期刊论文 前10条

1 解万财;黄素娟;邵蔚;朱福全;陈木生;;基于混合光模式阵列的自由空间编码通信[J];物理学报;2017年14期

2 周聪华;李百宏;项晓;王少峰;董瑞芳;刘涛;张首刚;;飞秒光学脉冲电场包络一阶时域微分实验研究[J];光学学报;2017年07期

3 焦东东;高静;邓雪;许冠军;董瑞芳;刘涛;张首刚;;窄线宽激光在光学谐振腔腔长精密测量中的应用[J];光学学报;2017年01期

4 赵坡;杨瑞霞;闫立华;安振峰;;宽温度范围无制冷固体激光器[J];强激光与粒子束;2016年10期

5 肖洋;于晋龙;王菊;王文睿;王子雄;谢田元;于洋;薛纪强;;二次偏振调制测距系统中调制频率与测距精度的关系[J];物理学报;2016年10期

6 张昊;常琛亮;夏军;;单环多段光强分布检测光学涡旋拓扑荷值[J];物理学报;2016年06期

7 钟雷;戴坤健;王庆;付时尧;;纯相位空间光调制器实现振幅调制的技术研究[J];光学技术;2015年06期

8 柯熙政;李亚星;;分数阶拉盖尔高斯光束轨道角动量的实验研究[J];激光与光电子学进展;2015年08期

9 王铮;辛t熿,

本文编号:2155294


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wulilw/2155294.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2947d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com