当前位置:主页 > 科技论文 > 物理论文 >

多量子比特Heisenberg自旋链热纠缠及內禀退相干性质研究

发布时间:2021-02-03 08:19
  量子纠缠是量子机制中非常重要的特征之一,也是量子计算与量子信息的关键支撑。海森堡模型的系统是一种常见的系统,它也是一种最简单的量子系统,它所包含的丰富的纠缠特性被人们大量研究。温度对系统的纠缠有明显的影响,在制备系统的纠缠时,我们常要调控温度来控制体系的热纠缠效应。在另一方面,任何一个真实的物理系统都不可能孤立存在,它必然会与外界环境之间存在物质与能量的交换,这就会导致系统量子相干性的消失,从而产生退相干性。在前人的研究中,人们发现内禀退相干对纠缠存在重要影响。在本论文中,我们开展如下三个研究工作:1、我们研究了一个含有次近邻相互作用五量子比特各向异性海森堡自旋链的热纠缠特性。我们数值计算了在不同系统参数下共生纠缠度的大小。研究发现,温度能抑制纠缠的产生。阻挫参数对次近邻两个量子比特的纠缠度,以及次近邻两个量子比特的纠缠度的影响有很大的不同。另外,磁场以及DM参数以及各向异性参数参数对纠缠度都有重要的影响。因此,选择合适的温度、阻挫参数、磁场以及DM相互作用参数和各向异性参数,我们能够有效的调控系统纠缠度的大小。2、我们研究了内禀退相干对一个四量子比特XX模型海森堡自旋链热纠缠纠缠的影... 

【文章来源】:湖北大学湖北省

【文章页数】:53 页

【学位级别】:硕士

【部分图文】:

多量子比特Heisenberg自旋链热纠缠及內禀退相干性质研究


图2.1含次近邻耦合作用的五量子比特Heisenberg模型图

对比图,阻挫,纠缠度,参数变化


同时出现纠缠的参数CC的区域在慢慢变窄。当5?>2.?8时,随磁场强度的增大,??纠缠只会出现在一个很小的区域内,且纠缠度(:』2所能达到的最大值只有0.?1。??对于次近邻两量子比特来说,如图2.3(b)所示,纠缠存在区域为《>1。随5的增??强,先变大,达到最大纠缠度后保持不变,直至S>?5。时,当S继续增强,??Cu又逐渐减小。当5<3时,随5的变化,出现纠缠的区域保持不变。当5>?3??时,随5的增大,临界阻挫参数区域也变大。由图2.3可看出,次近邻两量子比??特纠缠区域要远大于最近邻两量子比特纠缠区域。??^B-e-4?-2?0?2?4?e?8?%-#?矗墸?玻墸埃墸玻矗墸浚福崳?a?a??图2.?3共生纠缠度随着磁场及阻挫参数变化情况(a)心;(b)仏,(7"=0.?3,??供0,A?r?A?2=1,1/尸1?)?〇??当系统由各向同性变为各向异性时(A^A^O.?5),和Cy随阻挫参数a??变化情况如图2.4所示。对比图2.2和图2.4可以发现,各向异性对最近邻和次近邻??两量子比特纠缠都有很大的影响。对于来说

关系曲线,阻挫,纠缠度,参数变化


2.2.2?DM丨对心和^影响??为研宄DMI对Cu和的影响,取参数么1=么2=0.?5,当取不同:T和5时,??最近邻两量子比特纠缠度随DMI参数和阻挫参数变化情况如图2.6所示。图??2.6(a-c:)给出了磁场5为0时,随阻挫参数a的变化关系曲线。显然,在一定??阻挫参数区域,DMI参数能加强最近邻两粒子纠缠。以r=i为例,当系统不存在??DMI影响时,如图2.4(a)所示,存在纠缠的阻挫参数区域为-1.?8?<?a?<?0.?5和a?<?-5。??当1)^0时,存在纠缠的阻挫参数区域变大。£>=0.?5,?1,2时,第一个区域分别扩大??为-2.3<a<0.9,?-3<a<2.9和-4<a<6,同时第二个参数区域也在向左移。此??夕卜,随着Z?的增大,Cu所能达到的最大值也在增大。Z)=0.?5,?1,2时,所能??达到的最大值分别为0.17,?0.25和0.3。同样的现象也可在图2.6(d-i)中看出。图??2.6(d-i)还给出了磁场强度不为0时

【参考文献】:
期刊论文
[1]Effects of Pure Dzyaloshinskii-Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. 李大创,王先萍,李虎,李小曼,杨名,曹卓良.  Chinese Physics Letters. 2016(05)
[2]内禀退相干下海森伯XY模型中的热纠缠性质及其相干调控[J]. 姜春蕾,刘晓娟,刘明伟,王艳辉,彭朝晖.  物理学报. 2012(17)
[3]具有Dzyaloshinskii-Moriya相互作用的四量子比特海森堡XXZ模型中的热纠缠[J]. 张英丽,周斌.  物理学报. 2011(12)
[4]具有Dzyaloshinskii-Moriya相互作用的三量子比特海森伯模型中的对纠缠[J]. 王彦辉,夏云杰.  物理学报. 2009(11)



本文编号:3016193

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/wulilw/3016193.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2e433***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com