固体电子发射产额的蒙特卡洛模拟研究
发布时间:2021-05-19 12:30
自1950年代以来,人们已经在电子发射的相关领域进行了深入的实验研究,特别是能量分布、二次电子产额(SEY)以及背散射系数(BSC)。由不同研究人员测得的数据结果差异较大,因为其中一些数据不是在超高真空条件下测得的,因此表面污染可能通过功函数和电子亲和势的变化显著影响SEY和BSC。由于来自清洁表面的精确实验测量的可用数据非常有限,与二次电子级联产生和发射过程的相关机理仍未完全研究透彻。而且对于很多化合物材料的数据依然缺失,尽管它们具有广泛的实际应用。考虑到近年来电子-固体相互作用的理论模型已经取得了显著的研究进展,因此非常有必要对化合物材料/单质材料固体进行模拟研究,以得出更可靠的理论数据。本文基于先进的蒙特卡洛模型,研究了单质和化合物半导体材料在不同入射电子能量下的背散射系数、二次电子产额和总电子产额进行了系统的蒙特卡洛模拟计算。本文还对这些材料中激发和发射的二次电子在不同入射能量下的激发深度分布函数、发射深度分布函数及在深度分布函数中的组合效应进行了计算。如GaAs等半导体材料已广泛用于光伏材料中,二次电子产额是扫描电子显微表征的重要参数,尤其是针对最近开发的扫描超快电子显微镜,...
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:175 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Overview of the interaction between the electron beam and solid
1.1.1 Secondary electron
1.1.2 Backscattered electron
1.1.3 Auger electron
1.1.4 Elastic peak electrons
1.2 Different peaks on the complete energy spectrum
1.2.1 Losses peaks of electron energy
1.2.2 Auger electron peaks
1.2.3 Secondary electron peak
1.3 Principles and development in scanning electron microscopy
1.4 Factors affecting electron yields
1.4.1 External adsorption of atoms and ions
1.4.2 Work function and electron affinity
1.4.3 Temperature and phonon excitations
1.4.4 Surface and bulk plasmon decay
1.4.5 Thickness of the surface
1.4.6 Primary electron incident directions
1.4.7 Surface effects
1.4.8 Emission of the electrons from the adsorbed atoms
1.5 Angular distribution of the backscattered electrons
Chapter 2 Monte Carlo Simulation of Electron Transport
2.1 Theoretical overview of electron interaction with solid
2.1.1 Single-electron excitation
2.1.2 Plasmon excitation
2.1.3 Phonon excitation
2.1.4 Bremsstrahlung
2.2 Basic characteristics of cross-sections
2.3 Elastic scattering of electrons
2.4 Inelastic scattering of electrons
2.4.1 Energy loss function
2.4.2 Differential inverse inelastic mean free path
2.4.3 Inelastic mean free path
2.4.4 Sum rules
2.4.5 Secondary electron cascade process
2.5 Monte Carlo method and principles
2.6 Monte Carlo simulation procedures
2.7 Secondary electron generation and emission
2.8 Auger electron excitation
Chapter 3 Electron Backscattering Coefficient of Beryllium
3.1 Introduction
3.2 Mott elastic scattering cross section for Be, B and C-allotropes
3.2.1 Differential scattering cross section
3.2.2 Total scattering cross-section
3.2.3 Electron elastic mean free path
3.3 Electron inelastic scattering cross section of Be,B and C-allotropes
3.3.1 Energy loss functions
3.3.2 Sum rules
3.3.3 Inelastic mean free paths
3.4 Energy spectra of backscattered electrons
3.5 Backscattering coefficients
3.6 Effect of surface contaminations
3.7 Penetration depth dependence
3.8 Incident angle dependence
3.9 Angular distribution
Chapter 4 Calculation of the Mean Escape Depth of Secondary Electrons
4.1 Introduction
4.2 Theoretical background
4.3 Sum rule
4.4 Energy loss functions
4.5 Definition of depth distribution functions
4.6 Secondary electron energy distribution
4.7 Excitation depth distribution function
4.8 Emission depth distribution function
4.9 Partial depth distribution function
4.10 Simulated depth distribution function
4.11 Mean excitation depth and mean emission depth
Chapter 5 Electron Yields from Compound Semiconductor Materials
5.1 Introduction
5.2 Monte Carlo model
5.3 Mean atomic numbers
5.4 Energy loss functions and sum rules
5.5 Effect of the depletion layer
5.6 Energy spectra of secondary electrons
5.7 Energy spectra of backscattered electrons
5.8 Backscattering coefficients
5.9 Secondary electron yields
Chapter 6 Electron Backscattering Coefficients of Iron and Tungsten
6.1 Introduction
6.2 Theoretical background
6.3 Backscattered electron energy spectra
6.4 Backscattering coefficient
6.5 Effect of surface contamination
6.6 Penetration depth dependence
6.7 Angular distribution
Chapter 7 Summary
Publications
International conference attended
References
Acknowledgment
【参考文献】:
博士论文
[1]二次电子发射的Monte Carlo模拟及应用[D]. 邹艳波.中国科学技术大学 2017
本文编号:3195775
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:175 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Overview of the interaction between the electron beam and solid
1.1.1 Secondary electron
1.1.2 Backscattered electron
1.1.3 Auger electron
1.1.4 Elastic peak electrons
1.2 Different peaks on the complete energy spectrum
1.2.1 Losses peaks of electron energy
1.2.2 Auger electron peaks
1.2.3 Secondary electron peak
1.3 Principles and development in scanning electron microscopy
1.4 Factors affecting electron yields
1.4.1 External adsorption of atoms and ions
1.4.2 Work function and electron affinity
1.4.3 Temperature and phonon excitations
1.4.4 Surface and bulk plasmon decay
1.4.5 Thickness of the surface
1.4.6 Primary electron incident directions
1.4.7 Surface effects
1.4.8 Emission of the electrons from the adsorbed atoms
1.5 Angular distribution of the backscattered electrons
Chapter 2 Monte Carlo Simulation of Electron Transport
2.1 Theoretical overview of electron interaction with solid
2.1.1 Single-electron excitation
2.1.2 Plasmon excitation
2.1.3 Phonon excitation
2.1.4 Bremsstrahlung
2.2 Basic characteristics of cross-sections
2.3 Elastic scattering of electrons
2.4 Inelastic scattering of electrons
2.4.1 Energy loss function
2.4.2 Differential inverse inelastic mean free path
2.4.3 Inelastic mean free path
2.4.4 Sum rules
2.4.5 Secondary electron cascade process
2.5 Monte Carlo method and principles
2.6 Monte Carlo simulation procedures
2.7 Secondary electron generation and emission
2.8 Auger electron excitation
Chapter 3 Electron Backscattering Coefficient of Beryllium
3.1 Introduction
3.2 Mott elastic scattering cross section for Be, B and C-allotropes
3.2.1 Differential scattering cross section
3.2.2 Total scattering cross-section
3.2.3 Electron elastic mean free path
3.3 Electron inelastic scattering cross section of Be,B and C-allotropes
3.3.1 Energy loss functions
3.3.2 Sum rules
3.3.3 Inelastic mean free paths
3.4 Energy spectra of backscattered electrons
3.5 Backscattering coefficients
3.6 Effect of surface contaminations
3.7 Penetration depth dependence
3.8 Incident angle dependence
3.9 Angular distribution
Chapter 4 Calculation of the Mean Escape Depth of Secondary Electrons
4.1 Introduction
4.2 Theoretical background
4.3 Sum rule
4.4 Energy loss functions
4.5 Definition of depth distribution functions
4.6 Secondary electron energy distribution
4.7 Excitation depth distribution function
4.8 Emission depth distribution function
4.9 Partial depth distribution function
4.10 Simulated depth distribution function
4.11 Mean excitation depth and mean emission depth
Chapter 5 Electron Yields from Compound Semiconductor Materials
5.1 Introduction
5.2 Monte Carlo model
5.3 Mean atomic numbers
5.4 Energy loss functions and sum rules
5.5 Effect of the depletion layer
5.6 Energy spectra of secondary electrons
5.7 Energy spectra of backscattered electrons
5.8 Backscattering coefficients
5.9 Secondary electron yields
Chapter 6 Electron Backscattering Coefficients of Iron and Tungsten
6.1 Introduction
6.2 Theoretical background
6.3 Backscattered electron energy spectra
6.4 Backscattering coefficient
6.5 Effect of surface contamination
6.6 Penetration depth dependence
6.7 Angular distribution
Chapter 7 Summary
Publications
International conference attended
References
Acknowledgment
【参考文献】:
博士论文
[1]二次电子发射的Monte Carlo模拟及应用[D]. 邹艳波.中国科学技术大学 2017
本文编号:3195775
本文链接:https://www.wllwen.com/kejilunwen/wulilw/3195775.html