超密集组网中联合传输与联合资源分配算法的研究
本文选题:超密集组网 + 干扰管理 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:随着用户对高清视频、虚拟视觉(VR)等高速率、低时延业务的需求逐渐提高,现有的第四代移动通信(4G)技术将无法满足未来的通信需要。因此,对于第五代移动通信(5G)的研究有着前瞻性的价值与重要意义。与4G相比,5G将拥有更高的传输速率、更高的可靠性、更低的网络时延、更多样的网络设备(物联网)以及更密集的用户终端。为了满足在部分特定场景下(如写字楼,体育场馆)用户的高通信需求,超密集组网(Ultra-Dense Networks,UDN)技术应运而生。超密集组网通过部署多层次、高密度的接入节点来提高整体的系统容量。在热点高容量地区,超密集组网对于高速率、高密度、多种服务等通信业务的支持有着极大的潜力。超密集组网的应用,可以帮助频域资源的有效利用,并实现海量设备的高质量通信。但超密集组网的部署过程中,一个不可忽视的问题就是小区间的较强干扰。由于节点之间密度大,拉近了接收端与发射端距离的同时,也缩小了接收端与干扰源的距离,导致干扰强度增强、强干扰源数量增加。此外由于超密集组网是多层次的异构部署方式,层间干扰无法忽视,系统容量的提高远远达不到预期要求。因此,超密集组网的研究重点在于如何进行有效的干扰抑制,减少同频干扰。本文通过应用多点协作传输(Co MP)技术进行超密集组网的干扰管理。采用多点协作技术的原因主要包含以下两方面。首先,节点密度大,提高了多点协作传输所要求的多个节点共同协作的可能性。其次,超密集组网中干扰通常来自多个邻近节点,存在干扰源数量较大、干扰强度较强、干扰源异构等现象。只研究单一节点,没有节点之间协作的干扰抑制是不可行的。在多点协作传输中,本文主要研究了联合传输技术(JT)对干扰管理的作用。通过联合传输中协作集的选择讨论了不同协作集选择方式对干扰抑制与系统性能提升的影响。继而考虑了系统回传链路容量限制对协作集选择的影响,并通过基站睡眠/唤醒方式降低了回传链路压力。此外,由于传统子载波分配方式并不适用于多节点同时同频服务一个用户的联合传输场景,本课题还进行了适用于联合传输技术的子载波分配算法的改进。通过联合传输技术与子载波分配算法解决了超密集组网中干扰抑制问题,提高了系统性能。
[Abstract]:With the high speed of high definition video, virtual vision and VRV, and the increasing demand of low delay services, the existing fourth generation mobile communication (4G) technology will not be able to meet the future communication needs. Therefore, the fifth generation mobile communication 5 G) research has the prospective value and the important significance. Compared with 4G, the 5G will have higher transmission rate, higher reliability, lower network delay, more diverse network devices (Internet of things) and more dense user terminals. In order to meet the high communication requirements of users in some specific scenarios, such as office buildings, stadiums and stadiums, Ultra-Dense Networks (UDN) technology emerges as the times require. Super-dense network improves the system capacity by deploying multi-level and high-density access nodes. In hot and high capacity areas, ultra-dense networks have great potential for supporting high-rate, high-density, multi-service communication services. The application of super dense network can help the efficient use of frequency domain resources and realize the high quality communication of mass equipment. However, in the deployment of super-dense networks, a problem that can not be ignored is the strong interference between the cells. Because of the high density between the nodes, the distance between the receiver and the transmitter is shortened, and the distance between the receiver and the interference source is reduced, which leads to the increase of the interference intensity and the increase of the number of strong interference sources. In addition, because the super-dense network is a multi-level heterogeneous deployment mode, inter-layer interference can not be ignored, and the system capacity can not reach the expected requirements. Therefore, the research focus of ultra-dense network is how to suppress interference effectively and reduce the interference of the same frequency. In this paper, the interference management of super-dense network is implemented by using multi-point cooperative transmission co-MPI technology. The reason of adopting multi-point cooperation technology mainly includes the following two aspects. Firstly, because of the high node density, the possibility of multi-node cooperation required by multi-point cooperative transmission is improved. Secondly, the interference usually comes from several adjacent nodes in the super-dense network. There are many interference sources, such as large number of interference sources, strong interference intensity, heterogeneity of interference sources, and so on. It is not feasible to study only a single node without cooperative interference suppression between nodes. In multipoint cooperative transmission, this paper mainly studies the effect of JT on interference management. The effects of different cooperative set selection methods on interference suppression and system performance improvement are discussed through the selection of cooperative sets in joint transmission. Then the influence of the capacity limitation of the system return link on the selection of the cooperative set is considered and the pressure of the return link is reduced by the sleep / wake-up mode of the base station. In addition, because the traditional subcarrier allocation method is not suitable for multi-node simultaneous co-frequency service of a user's joint transmission scenario, the subcarrier allocation algorithm suitable for joint transmission technology is also improved in this paper. The joint transmission technique and subcarrier allocation algorithm are used to solve the problem of interference suppression in super-dense network, and the system performance is improved.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN929.5
【参考文献】
相关期刊论文 前3条
1 张建敏;谢伟良;杨峰义;;5G超密集组网网络架构及实现[J];电信科学;2016年06期
2 尤肖虎;潘志文;高西奇;曹淑敏;邬贺铨;;5G移动通信发展趋势与若干关键技术[J];中国科学:信息科学;2014年05期
3 李校林;卢清;;基于用户满意度的CoMP-JT多小区资源分配算法[J];重庆邮电大学学报(自然科学版);2013年06期
相关博士学位论文 前2条
1 于佳;基于CoMP技术的密集网络资源分配研究[D];哈尔滨工业大学;2015年
2 章辉;蜂窝小区干扰抑制与性能增强技术研究[D];北京邮电大学;2010年
相关硕士学位论文 前10条
1 张洪;超密集组网中区域频谱效率及区域能量效率的研究[D];哈尔滨工业大学;2016年
2 贾红娜;基于OFDMA的无线资源分配算法研究[D];燕山大学;2016年
3 孙瑞;LTE-A异构网络多点协作传输技术研究[D];电子科技大学;2016年
4 冯伟龙;超密集网络(UDN)的性能分析与关键技术研究[D];北京交通大学;2016年
5 刘海燕;面向5G的超密集网络中分布式无线资源管理的研究[D];北京交通大学;2016年
6 郭少珍;超密集网络中的分布式优化算法的研究[D];北京理工大学;2016年
7 陶铭亮;下一代网络中动态TDD模式下的干扰协调和时序控制[D];北京邮电大学;2015年
8 张彤;CoMP下无线资源分配研究[D];北京邮电大学;2015年
9 张会丽;异构融合网络联合资源分配算法研究[D];重庆邮电大学;2014年
10 朱峰;热点区域LTE小基站干扰协调研究[D];兰州大学;2014年
,本文编号:1997839
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1997839.html