基于压缩感知中观测矩阵优化和重构算法研究
本文选题:压缩感知 + 观测矩阵 ; 参考:《南京邮电大学》2017年硕士论文
【摘要】:压缩感知是一种新兴起的采样理论,信号在采样的同时完成了压缩,打破了的传统Nyquist采样定理。压缩感知充分依据信号是可稀疏的,利用非自适应线性投影来尽量保留原始信号的信息,并利用数值凸优化精确解析重构信号。本文主要针对压缩感知中观测矩阵优化与重构算法设计这两部分做了以下研究:1.介绍了梯度下降法与QR分解原理,提出一种新的观测矩阵优化。并对它进行实验仿真,与现有的几种矩阵优化方法对比分析,此优化方法在提高峰值信噪比和重构稳定性方面具有较好的效果。2.具体介绍了增大矩阵列独立性的矩阵分解原理,并利用梯度下降法降低观测矩阵同稀疏矩阵之间的相关性,将二者相结合进一步改进观测矩阵。对比仿真实验结果表明,新矩阵具有较好的重构性能。3.提出了一种将改进的观测矩阵与共轭梯度法相结合的算法。针对于共轭梯度重构算法,优化其观测矩阵,得到新的重构算法,此算法保留了观测矩阵优化OMP算法的稳定性和鲁棒性,同时又具备共轭梯度算法的严谨性。实验仿真表明,改进后观测矩阵的共轭梯度算法的重构时间大大减少,并证实了其可行性与优越性。
[Abstract]:Compression sensing is a new sampling theory. The signal is compressed at the same time, which breaks the traditional Nyquist sampling theorem. Compression sensing is based on the sparsity of the signal, the non-adaptive linear projection is used to keep the original signal information as much as possible, and the numerical convexity optimization is used to accurately analyze the reconstructed signal. In this paper, we focus on the optimization and reconstruction algorithm design of observation matrix in compressed sensing, and do the following research: 1. The gradient descent method and QR decomposition principle are introduced, and a new optimization of observation matrix is proposed. The simulation results are compared with the existing matrix optimization methods. The results show that this optimization method can improve the PSNR and the reconstruction stability. 2. The principle of matrix decomposition to increase the independence of matrix column is introduced in detail, and the correlation between observation matrix and sparse matrix is reduced by gradient descent method, and the observation matrix is further improved by combining the two methods. The simulation results show that the new matrix has good reconstruction performance. 3. An algorithm combining the improved observation matrix with the conjugate gradient method is proposed. For the conjugate gradient reconstruction algorithm, the observation matrix is optimized, and a new reconstruction algorithm is obtained. This algorithm preserves the stability and robustness of the observation matrix optimization OMP algorithm and has the preciseness of the conjugate gradient algorithm at the same time. The experimental results show that the reconstruction time of the conjugate gradient algorithm of the improved observation matrix is greatly reduced and the feasibility and superiority of the algorithm are verified.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN911.7
【参考文献】
相关期刊论文 前10条
1 郑晓;薄华;孙强;;QR分解与特征值优化观测矩阵的算法研究[J];智能系统学报;2015年01期
2 尹宏鹏;刘兆栋;柴毅;焦绪国;;压缩感知综述[J];控制与决策;2013年10期
3 张桂珊;肖刚;戴卓智;沈智威;李胜开;吴仁华;;压缩感知技术及其在MRI上的应用[J];磁共振成像;2013年04期
4 彭玉楼;何怡刚;林斌;;基于奇异值分解的压缩感知噪声信号重构算法[J];仪器仪表学报;2012年12期
5 赵瑞珍;秦周;胡绍海;;一种基于特征值分解的测量矩阵优化方法[J];信号处理;2012年05期
6 赵瑞珍;林婉娟;李浩;胡绍海;;基于光滑l_0范数和修正牛顿法的压缩感知重建算法[J];计算机辅助设计与图形学学报;2012年04期
7 焦李成;杨淑媛;刘芳;侯彪;;压缩感知回顾与展望[J];电子学报;2011年07期
8 石光明;刘丹华;高大化;刘哲;林杰;王良君;;压缩感知理论及其研究进展[J];电子学报;2009年05期
9 傅迎华;;可压缩传感重构算法与近似QR分解[J];计算机应用;2008年09期
10 方红;章权兵;韦穗;;改进的后退型最优正交匹配追踪图像重建方法[J];华南理工大学学报(自然科学版);2008年08期
相关硕士学位论文 前2条
1 郑丹青;基于压缩感知的信号观测和重构算法研究[D];南京邮电大学;2016年
2 陆望;基于压缩感知的信号重构算法研究及应用[D];南京邮电大学;2015年
,本文编号:2045580
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2045580.html