当前位置:主页 > 科技论文 > 信息工程论文 >

采用ZigBee节点网络的室内定位系统研究

发布时间:2018-08-13 14:55
【摘要】:随着数据业务和多媒体业务的快速增长,人们对定位和导航的需求日益增加,尤其是在复杂的室内环境,如机场大厅、展厅、仓库、超市、图书馆、地下停车场等,常常需要定位移动终端或其持有者在室内的位置。与室外环境相比,室内定位受定位时间、定位精度及室内复杂环境等条件的限制,导致目前比较完善的室外定位方法还无法有效地运用到室内环境中,因此寻找定位精度高、稳健性好、实现简单、成本低的室内定位系统已经成为当今业界研究的热点。在阐述室内定位的研究现状并比较常见的室内定位系统后,选择基于ZigBee的无线传感器网络来实现室内定位系统的开发。在搭建好室内定位系统的软硬件平台后,通过比较目前几种常用的室内定位方法,选择了方便易行的基于接收信号强度指示(RSSI)信息对系统进行研究。针对在RSSI测距过程中由于环境噪声的影响使定位误差在超过一定的距离后过大的问题,实现了一种分区域加权质心算法,该算法将定位区域分成多个子区域来实现近距离定位,还采用了节点距离倒数之和代替距离和的倒数作为权重,同时对权重进行系数修正以充分利用节点信息。仿真结果表明,该算法的相对定位精度比原有加权质心算法提高了25%,并且算法稳健性更好。由于室内复杂环境所造成的测距误差是不可避免的,导致采用传统定位算法的定位系统的性能受到限制,还利用多层前馈(BP)人工神经网络的容错能力和非线性映射能力来进一步改善定位性能。仿真结果表明,该网络在6m×3m的区域内平均定位精度为0.21m。此外,针对网络在训练过程中易陷入局部极小点的问题,运用粒子群算法(PSO)来优化网络的初始权值和阈值,实验结果表明该改进算法的定位精度可达0.16m,比普通BP神经网络的相对定位精度提高了23.8%。
[Abstract]:With the rapid growth of data and multimedia services, the demand for positioning and navigation is increasing, especially in complex indoor environments, such as airport halls, exhibition halls, warehouses, supermarkets, libraries, underground parking lots, etc. It is often necessary to locate the location of the mobile terminal or its holder indoors. Compared with outdoor environment, indoor positioning is limited by the conditions of positioning time, positioning precision and complex indoor environment, which results in the relatively perfect outdoor positioning methods can not be effectively applied to indoor environment, so the precision of locating is high. The indoor positioning system, which has good robustness, simple implementation and low cost, has become a hot spot in the industry. After expounding the research status of indoor positioning and the common indoor positioning system, the wireless sensor network based on ZigBee is selected to realize the development of indoor positioning system. After setting up the hardware and software platform of the indoor positioning system, by comparing several commonly used indoor positioning methods, a convenient and easy method based on the received signal strength indication (RSSI) information is selected to study the system. In order to solve the problem that the location error is too large after a certain distance in the process of RSSI ranging, a sub-region weighted centroid algorithm is implemented, which divides the location area into several sub-regions to realize the short distance location. The sum of reciprocal distance of nodes is used to replace the reciprocal of distance sum as weight, and the coefficient of weight is modified to make full use of node information. The simulation results show that the accuracy of the algorithm is 25% higher than that of the original weighted centroid algorithm, and the robustness of the algorithm is better than that of the original weighted centroid algorithm. Because the ranging error caused by indoor complex environment is inevitable, the performance of localization system using traditional localization algorithm is limited. The fault tolerance and nonlinear mapping ability of multilayer feedforward (BP) artificial neural network are also used to further improve the location performance. The simulation results show that the average positioning accuracy of the network is 0.21 m in the region of 6m 脳 3m. In addition, the particle swarm optimization algorithm (PSO) is used to optimize the initial weights and thresholds of the network. The experimental results show that the accuracy of the improved algorithm can reach 0.16m, which is 23.88m higher than that of the common BP neural network.
【学位授予单位】:上海师范大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN92

【相似文献】

相关期刊论文 前10条

1 赵军;李鸿斌;王智;;无线网络室内定位系统研究[J];信息与控制;2008年04期

2 梁韵基;周兴社;於志文;倪红波;;普适环境室内定位系统研究[J];计算机科学;2010年03期

3 汪苑;林锦国;;几种常用室内定位技术的探讨[J];中国仪器仪表;2011年02期

4 王丽英;;导航发展的新热点——室内定位[J];今日电子;2011年12期

5 ;卫星信号易被干扰 室内定位技术解析[J];金卡工程;2012年07期

6 李振;姚以鹏;;大型公共场馆智能室内定位导游系统的技术研究[J];广东科技;2013年12期

7 袁飞;;浅谈室内定位与机场旅客个性化服务[J];中国科技信息;2014年08期

8 张玉梅;康晓霞;;救援队员室内定位技术分析[J];消防科学与技术;2012年06期

9 杨华;刘军发;陈益强;;一种基于多终端动态协同的室内定位方法[J];计算机应用研究;2012年07期

10 胡天琨;叶建芳;;基于手持设备的室内定位系统设计与实现[J];微型机与应用;2012年13期

相关会议论文 前8条

1 张立立;钟耳顺;;无线室内定位技术[A];中国地理信息系统协会第八届年会论文集[C];2004年

2 郭明涛;李文元;龚福春;;室内定位方法分析[A];2007北京地区高校研究生学术交流会通信与信息技术会议论文集(下册)[C];2008年

3 郭旭斌;叶长城;王忆文;李辉;;基于无线传感器网络的室内定位系统[A];第十五届计算机工程与工艺年会暨第一届微处理器技术论坛论文集(A辑)[C];2011年

4 房秉毅;李熹;;超宽带室内定位系统研究[A];2005年全国超宽带无线通信技术学术会议论文集[C];2005年

5 高雪晨;蒋泰;曹林峰;;基于RFID的室内定位系统设计[A];广西计算机学会2012年学术年会论文集[C];2012年

6 徐劲松;卢晓春;边玉敬;;基于UWB的室内定位系统设计与仿真[A];2009全国时间频率学术会议论文集[C];2009年

7 雷地球;罗海勇;刘晓明;;一种基于WiFi的室内定位系统设计与实现[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年

8 胡斌;宋娜娜;;基于航位推测技术的消防人员室内定位系统研究[A];2014中国消防协会科学技术年会论文集[C];2014年

相关重要报纸文章 前10条

1 本报记者 马静t,

本文编号:2181322


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2181322.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b9d5f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com